【題目】如圖,已知BE平分∠ABC,CE平分∠ACD,且交BE于點(diǎn)E,BAC=30°,則∠CAE=__.

【答案】75°

【解析】

如圖過點(diǎn)E分別作EGBD、EHBA、EIAC,垂足分別為G、H、I,根據(jù)角平分線的性質(zhì)可得EH=EG,EI=EG,再根據(jù)角平分線的性質(zhì)的逆定理可證AE平分∠FAC,再根據(jù)∠FAC與∠BAC互補(bǔ)即可.

證明:如圖所示:過點(diǎn)E分別作EGBDEHBA、EIAC,垂足分別為G、H、I
BE平分∠ABC,EGBD,EHBA,
EH=EG
CE平分∠ACD,EGBD,EIAC,
EI=EG
EI=EH,
EHBAEIAC,

AE平分FAC

∵∠BAC=30°

∴∠FAC=180°-BAC=150°

∴∠CAE=FAC=75°

故答案為:75°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠A=90°,AB=3,AC=4,D為AC中點(diǎn),P為AB上的動(dòng)點(diǎn),將P繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°得到P′,連CP′,則線段CP′的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】科技館是少年兒童節(jié)假日游玩的樂園.
如圖所示,圖中點(diǎn)的橫坐標(biāo)x表示科技館從8:30開門后經(jīng)過的時(shí)間(分鐘),縱坐標(biāo)y表示到達(dá)科技館的總?cè)藬?shù).圖中曲線對(duì)應(yīng)的函數(shù)解析式為y= ,10:00之后來(lái)的游客較少可忽略不計(jì).

(1)請(qǐng)寫出圖中曲線對(duì)應(yīng)的函數(shù)解析式;
(2)為保證科技館內(nèi)游客的游玩質(zhì)量,館內(nèi)人數(shù)不超過684人,后來(lái)的人在館外休息區(qū)等待.從10:30開始到12:00館內(nèi)陸續(xù)有人離館,平均每分鐘離館4人,直到館內(nèi)人數(shù)減少到624人時(shí),館外等待的游客可全部進(jìn)入.請(qǐng)問館外游客最多等待多少分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校準(zhǔn)備購(gòu)買若干臺(tái)A型電腦和B型打印機(jī).如果購(gòu)買1臺(tái)A型電腦,2臺(tái)B型打印機(jī),一共需要花費(fèi)5900;如果購(gòu)買2臺(tái)A型電腦,2臺(tái)B型打印機(jī),一共需要花費(fèi)9400.

(1)求每臺(tái)A型電腦和每臺(tái)B型打印機(jī)的價(jià)格分別是多少元?

(2)如果學(xué)校購(gòu)買A型電腦和B型打印機(jī)的預(yù)算費(fèi)用不超過20000,并且購(gòu)買B型打印機(jī)的臺(tái)數(shù)要比購(gòu)買A型電腦的臺(tái)數(shù)多1臺(tái),那么該學(xué)校至多能購(gòu)買多少臺(tái)B型打印機(jī)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一個(gè)有45°角的三角板的直角頂點(diǎn)放在一張寬為3cm的紙帶邊沿上,另一個(gè)頂

點(diǎn)在紙帶的另一邊沿上,測(cè)得三角板的一邊與紙帶的一邊所在的直線成30°角,如圖(3),

則三角板的最大邊的長(zhǎng)為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC,AD是∠BAC的平分線,AD的垂直平分線分別交AB于點(diǎn)F,BC的延長(zhǎng)線于點(diǎn)E.

求證:(1)EAD=EDA;

(2)DFAC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足為F.

(1)求證:△ABC≌△ADE;

(2)求∠FAE的度數(shù);

(3)求證:CD=2BF+DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在括號(hào)中填寫理由.如圖,已知∠B+BCD180°,∠B=∠D.求證:∠E=∠DFE

證明:∵∠B+BCD180°(   

ABCD    

∴∠B      

又∵∠B=∠D(已知 ),

∴∠D      

ADBE   

∴∠E=∠DFE 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】交通工程學(xué)理論把在單向道路上行駛的汽車看成連續(xù)的液體,并用流量、速度、密度三個(gè)概念描述車流的基本特征。其中流量q(輛/小時(shí))指單位時(shí)間內(nèi)通過道路指定斷面的車輛數(shù);速度v(千米/小時(shí))指通過道路指定斷面的車輛速度;密度(輛/千米)指通過道路指定斷面單位長(zhǎng)度內(nèi)的車輛數(shù),為配合大數(shù)據(jù)治堵行動(dòng),測(cè)得某路段流量q與速度v之間的部分?jǐn)?shù)據(jù)如下表:

速度v(千米/小時(shí))

5

10

20

32

40

48

流量q(輛/小時(shí))

550

1000

1600

1792

1600

1152


(1)根據(jù)上表信息,下列三個(gè)函數(shù)關(guān)系式中,刻畫q,v關(guān)系最準(zhǔn)確的是(只需填上正確答案的序號(hào))①
(2)請(qǐng)利用(1)中選取的函數(shù)關(guān)系式分析,當(dāng)該路段的車流速為多少時(shí),流量達(dá)到最大?最大流量是多少?
(3)已知q,v,k滿足 ,請(qǐng)結(jié)合(1)中選取的函數(shù)關(guān)系式繼續(xù)解決下列問題:
①市交通運(yùn)行監(jiān)控平臺(tái)顯示,當(dāng) 時(shí)道路出現(xiàn)輕度擁堵,試分析當(dāng)車流密度k在什么范圍時(shí),該路段出現(xiàn)輕度擁堵;
②在理想狀態(tài)下,假設(shè)前后兩車車頭之間的距離d(米)均相等,求流量q最大時(shí)d的值

查看答案和解析>>

同步練習(xí)冊(cè)答案