【題目】如圖,已知△ABC中,∠C90°,ACBC,將△ABC繞點A順時針方向旋轉(zhuǎn)60°到△ABC的位置,連接C'B

(1)求∠ABC'的度數(shù);

(2)C'B的長.

【答案】(1)ABC'30°;(2)CB1.

【解析】

1)如圖,連接BB′,延長BC′AB′于點M;證明ABC′≌△B′BC′,得到∠MBB′=MBA=30°;(2)求出BMC′M的長,即可解決問題.

解:(1)如圖,連接BB′,延長BC′交AB′于點M;

由題意得:∠BAB′=60°,BABA

∴△ABB′為等邊三角形,

∴∠ABB′=60°,ABBB

在△ABC′與△BBC′中,

∴△ABC′≌△BBC(SSS),

∴∠MBB′=∠MBA30°,

即∠ABC'30°;

(2)∵∠MBB′=∠MBA,

BMAB′,且AMBM;

由題意得:AB24,

AB′=AB2,AM1,

CMAB′=1;由勾股定理可求:BM

CB1,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,大圓O的半徑OC是小圓O1的直徑,且有OC垂直于圓O的直徑AB.圓O1的切線ADOC的延長線于點E,切點為D.已知圓O1的半徑為r,則AO1_____,DE_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程mx2+15mx50m≠0

1)求證:無論m為任何非0實數(shù),此方程總有兩個實數(shù)根.

2)若拋物線ymx2+15mx5m≠0)與x軸交于Ax1,0)、Bx2,0)兩點,且|x1x2|6,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PA、PB為圓O的切線,切點分別為A、B,POAB于點C,PO的延長線交圓O于點D,下列結(jié)論不一定成立的是( )

A. PAPBB. ∠BPD=∠APDC. AB⊥PDD. AB平分PD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的切線,切點為B,OA交⊙O于點C,過點C的切線交AB于點D.若∠BAO30°CD2

1)求⊙O的半徑;

2)若點P上運動,設(shè)點P到直線BC的距離為x,圖中陰影部分的面積為y,求yx之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,OBOA,且OB2OA,點A的坐標(biāo)是(1,2)

1)求點B的坐標(biāo);

2)求過點AO、B的拋物線的表達式;

3)連接AB,在(2)中的拋物線上是否存在點P,使得SABPSABO.若存在,請直接寫出點P的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將正方形OABC繞點O逆時針旋轉(zhuǎn)45°后得到正方形OA1B1C1,依此方式,繞點O連續(xù)旋轉(zhuǎn)2018次得到正方形OA2018B2018C2018,如果點A的坐標(biāo)為(1,0),那么點B2018的坐標(biāo)為(  )

A. (1,1) B. (0, C. D. (﹣1,1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市準(zhǔn)備進一批每個進價為40元的小家電,經(jīng)市場調(diào)查預(yù)測,售價定為50元時可售出400個;定價每增加1元,銷售量將減少10.

1)設(shè)每個定價增加x元,此時的銷售量是多少?(用含x的代數(shù)式表示)

2)超市若準(zhǔn)備獲得利潤6000元,并且使進貨量較少,則每個應(yīng)定價為多少元?

3)超市若要獲得最大利潤,則每個應(yīng)定價多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點A(3,6)、B(9,一3),以原點O為位似中心,相似比為,把ABO縮小,則點A的對應(yīng)點A的坐標(biāo)是

A.(1,2)

B.(9,18)

C.(9,18)或(9,18)

D.(1,2)或(1,2)

查看答案和解析>>

同步練習(xí)冊答案