【題目】問題呈現(xiàn):
如圖 1,在邊長為 1 小的正方形網(wǎng)格中,連接格點(diǎn) A、B 和 C、D,AB 和 CD 相交于點(diǎn) P,求 tan ∠CPB 的值方法歸納:求一個銳角的三角函數(shù)值,我們往往需要找出(或構(gòu)造出)一個直角三角形,觀察發(fā)現(xiàn)問題中∠ CPB不在直角三角形中,我們常常利用網(wǎng)格畫平行線等方法解決此類問題,比如連接格點(diǎn) B、 E,可得 BE∥CD,則∠ABE=∠CPB,連接AE,那么∠CPB 就變換到 Rt△ABE 中.問題解決:
(1)直接寫出圖 1 中 tan CPB 的值為______;
(2)如圖 2,在邊長為 1 的正方形網(wǎng)格中,AB 與 CD 相交于點(diǎn) P,求 cos CPB 的值.
【答案】(1)2;(2)
【解析】
(1)根據(jù)平行四邊形的判定及平行線的性質(zhì)得到∠CPB=∠ABE,利用勾股定理求出AE,BE,AB,證明△ABE是直角三角形,∠AEB=90°,即可求出tan CPB= tan ABE;
(2)如圖2中,取格點(diǎn)D,連接CD,DM.通過平行四邊形及平行線的性質(zhì)得到∠CPB=∠MCD,利用勾股定理的逆定理證明△CDM是直角三角形,且∠CDM=90°,即可得到cos∠CPB=cos∠MCD.
解:(1)連接格點(diǎn) B、 E,
∵BC∥DE,BC=DE,
∴四邊形BCDE是平行四邊形,
∴DC∥BE,
∴∠CPB=∠ABE,
∵AE=,BE=,AB=
,
∴△ABE是直角三角形,∠AEB=90°,
∴tan∠CPB= tan∠ABE=,
故答案為:2;
(2)如圖2所示,取格點(diǎn)M,連接CM,DM,
∵CB∥AM,CB=AM,
∴四邊形ABCM是平行四邊形,
∴CM∥AB,
∴∠CPB=∠MCD,
∵CM=,CD=,MD=,
,
∴△CDM是直角三角形,且∠CDM=90°,
∴cos∠CPB=cos∠MCD=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A在雙曲線y=(x>0)上,點(diǎn)B在雙曲線y=(x>0)上,且AB∥x軸,BC∥y軸,點(diǎn)C在x軸上,則△ABC的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“全民讀書月”活動中,小明調(diào)查了班級里40名同學(xué)本學(xué)期購買課外書的費(fèi)用情況,并將結(jié)果繪制成如圖所示的統(tǒng)計表和扇形統(tǒng)計圖,請根據(jù)相關(guān)信息,解答下列問題:(直接填寫結(jié)果)
費(fèi)用(元) | 20 | 30 | 50 | 80 | 100 |
人數(shù) | 6 | a | 10 | b | 4 |
(1)本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)是 元,中位數(shù)是 元;
(2)扇形統(tǒng)計圖中,“50元”所對應(yīng)的圓心角的度數(shù)為 度,該班學(xué)生購買課外書的平均費(fèi)用為 元;
(3)若該校共有學(xué)生1000人,根據(jù)樣本數(shù)據(jù),估計本學(xué)期購買課外書花費(fèi)50元的學(xué)生有 人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九年級某班同學(xué)在“五四”游園活動中進(jìn)行抽獎活動.在一個不透明的口袋中有三個完全相同的小球,把它們分別標(biāo)號為A,B,C,隨機(jī)摸出一個小球記下標(biāo)號后放回?fù)u勻,再從中隨機(jī)摸出一個小球記下標(biāo)號.
(1)請用列表或畫樹形圖的方法(只選其中一種),表示兩次摸出小球上的標(biāo)號的所有結(jié)果;
(2)規(guī)定當(dāng)兩次摸出的小球標(biāo)號相同時中獎,求中獎的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù) y=kx-2 的圖象與 x 軸、y 軸分別交于 A,B 兩點(diǎn),與反比例函數(shù)的圖象交于點(diǎn) C,且 AB=AC,則 k 的值為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形中,、分別為、的中點(diǎn),連接、,和交于點(diǎn).
(1)如圖1,求證:;
(2)如圖2,作關(guān)于對稱的圖形,連接,在不添加任何輔助線的情況下,請直接寫出圖2中四個三角形,使寫出的每個三角形的面積都等于正方形面積的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】揚(yáng)州市“五個一百工程“在各校普遍開展,為了了解某校學(xué)生每天課外閱讀所用的時間情況,從該校學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行問卷調(diào)查,并將結(jié)果繪制成如圖不完整的頻數(shù)分布表和頻數(shù)分布直方圖.
每天課外閱讀時間t/h | 頻數(shù) | 頻率 |
0<t≤0.5 | 24 | |
0.5<t≤1 | 36 | 0.3 |
1<t≤1.5 | 0.4 | |
1.5<t≤2 | 12 | b |
合計 | a | 1 |
根據(jù)以上信息,回答下列問題:
(1)表中a= ,b= ;
(2)請補(bǔ)全頻數(shù)分布直方圖;
(3)若該校有學(xué)生1200人,試估計該校學(xué)生每天課外閱讀時間超過1小時的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB、CD相交于點(diǎn)O,△AOC≌△BOD,點(diǎn)E、F分別在OA、OB上,要使△EOC≌△FOD,添加的一個條件不可能是( )
A. ∠OCE=∠ODF B. ∠CEA=∠DFB C. CE=DF D. OE=OF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)(-1,0),頂點(diǎn)坐標(biāo)為(1,m),與y軸交點(diǎn)在(0,3),(0,4)之(不包含端點(diǎn)),現(xiàn)有下列結(jié)論:①3a+b>0;②-<a<-1;③關(guān)于x的方程ax2+bx+c=m-2有兩個不相等的實(shí)數(shù)根:④若點(diǎn)M(-1.5,y1),N(2.5,y2)是函數(shù)圖象上的兩點(diǎn),則y1=y2.其中正確結(jié)論的個數(shù)為( 。
A.1B.2C.3D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com