【題目】如圖,在等腰ABC中,點D、E分別是邊AB、AC上的兩點(點D不與點AB重合),且DEBC,以DE為一邊,在四邊形DBCE的內部作正方形DEFG,已知AB=AC=5,BC=6.

(1)試求ABC的面積;

(2)當GFBC重合時,求正方形DEFG的邊長;

(3)若BG的長度等于正方形DEFG的邊長,試求AD的長.

【答案】(1)12(2) (3)

【解析】試題分析:(1)作底邊上的高,利用勾股定理求出高就可以求出面積.

(2)根據(jù)DEBC,得到ADE∽△ABC,再根據(jù)相似三角形對應高的比等于相似比即可求出邊DE的長度.

3ADy,作GHBD,由ADE∽△ABC,由ADE∽△ABC,得,

BGH∽△ABM,得

解:1)作AMBCBCM

AB=AC,BE=EC=3,

在Rt△AMC中,由,可得AM=4,

2)設正方形邊長為x,AMDE于點N,由題意,得ADE∽△ABC,

,∴,

解得正方形DEFG的邊長為

3)設ADy,作GH⊥BD,

ADE∽△ABC,即,解得,

BGH∽△ABM,,即,

解之得,AD的長為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=ax2+bx+c的頂點為D﹣1,2),與x軸的一個交點A在點(﹣3,0)和(﹣20)之間,其部分圖象如圖,則以下結論:①b2﹣4ac0;②當x﹣1時,yx增大而減。虎a+b+c0;④若方程ax2+bx+c﹣m=0沒有實數(shù)根,則m2; 3a+c0.其中正確結論的個數(shù)是( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,點P是等邊△ABC中一點,線段AP繞點A逆時針旋轉60°到AQ,連接PQ、QC

1)求證:PB=QC

2)若∠APB=150°,PA=9PB=12,求PC的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,O為坐標原點,A、B兩點的坐標分別為A(0,m)、B(n,0),且|mn﹣3|+=0,點PA出發(fā),以每秒1個單位的速度沿射線AO勻速運動,設點P的運動時間為t秒.

(1)OA、OB的長;

(2)連接PB,設△POB的面積為S,用t的式子表示S;

(3)過點P作直線AB的垂線,垂足為D,直線PDx軸交于點E,在點P運動的過程中,是否存在這樣的點P,使△EOP≌△AOB?若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知O為直線AD上一點,∠AOC與∠AOB互補,OMON分別是∠AOC和∠AOB的平分線.

(1) 試說明:∠AOB=∠COD;

(2) 若∠COD36°,求∠MON的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtBAC中,∠BAC=90°,EBC的中點,ADBC,AEDC,EFCD于點F

1)求證:DC=EC

2)若AB=6,BC=10,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有A型、B型、C型三種不同的紙板,其中A型:邊長為a厘米的正方形;B型:長為a厘米,寬為1厘米的長方形;C型:邊長為1厘米的正方形.

1A2塊,B4塊,C4塊,此時紙板的總面積為 平方厘米;

①從這10塊紙板中拿掉1A型紙板,剩下的紙板在不重疊的情況下,可以緊密的排出一個大正方形,這個大正方形的邊長為 厘米;

②從這10塊紙板中拿掉2塊同類型的紙板,使得剩下的紙板在不重疊的情況下,可以緊密地排出兩個相同的大正方形,請問拿掉的是2塊哪種類型的紙板?(計算說明)

2A12塊,B12塊,C4塊,從這28塊紙板中拿掉1塊紙板,使得剩下的紙板在不重疊的情況下,可以緊密地排出三個相同形狀的大正方形,則大正方形的邊長為 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖1,四邊形ABCD是平行四邊形,E,F是對角線AC上的兩點,AE=CF.

1)求證:四邊形DEBF是平行四邊形;

2)如果AE=EF=FC,請直接寫出圖中2所有面積等于四邊形DEBF的面積的三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列方程解應用題:某玩具廠生產一種玩具,按照控制固定成本降價促銷的原則,使生產的玩具能夠及時售出,據(jù)市場調查:每個玩具按480元銷售時,每天可銷售160個;若銷售單價每降低1元,每天可多售出2個,已知每個玩具的固定成本為360元,問這種玩具的銷售單價為多少元時,廠家每天可獲利潤最多?最多獲利是多少元?

查看答案和解析>>

同步練習冊答案