分析 (1)由等腰直角三角形的性質(zhì)及正方形的性質(zhì)就可以得出△ADE≌△BDG就可以得出結(jié)論;
(2)如圖2,連接AD,由等腰直角三角形的性質(zhì)及正方形的性質(zhì)就可以得出△ADE≌△BDG就可以得出結(jié)論.
解答 解:(1)BG=AE.AE⊥BG,
理由:∵△ABC是等腰直角三角形,∠BAC=90°,點D是BC的中點,
∴AD⊥BC,BD=CD,
∴∠ADB=∠ADC=90°.
∵四邊形DEFG是正方形,
∴DE=DG.
在△BDG和△ADE中,
$\left\{\begin{array}{l}{BD=AD}\\{∠BDE=∠ADE}\\{GD=ED}\end{array}\right.$,
∴△ADE≌△BDG(SAS),
∴BG=AE;
∴∠DEA=∠DGB,
∵∠DEA+∠DNE=90°,∠DNE=∠MNG,
∴∠MNG+DGB=90°,
∴AE⊥BG;
(2)成立,
理由:如圖②,連接AD,
∵在Rt△BAC中,D為斜邊BC中點,
∴AD=BD,AD⊥BC,
∴∠ADG+∠GDB=90°.
∵四邊形EFGD為正方形,
∴DE=DG,且∠GDE=90°,
∴∠ADG+∠ADE=90°,
∴∠BDG=∠ADE.
在△BDG和△ADE中,
$\left\{\begin{array}{l}{BD=AD}\\{∠BDG=∠ADE}\\{GD=ED}\end{array}\right.$,
∴△BDG≌△ADE(SAS),
∴BG=AE,
∠AED=∠BGD,
∴∠BGD+DMG=90°,∠DMG=∠EMN
∴∠EMN+∠AED=90°,
∴BG⊥AE.
點評 本題考查了旋轉(zhuǎn)的性質(zhì)的運用,等腰直角三角形的性質(zhì)的運用,勾股定理的運用,全等三角形的判定及性質(zhì)的運用,正方形的性質(zhì)的運用,解答時證明三角形全等是關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | 1 | C. | -1 | D. | 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com