分析 作MN⊥AD,先證明MA=ME,進(jìn)而求出AN=NE=1,利用MN∥CD得$\frac{MN}{CD}=\frac{NE}{ED}$求出MN,在RT△MND中利用勾股定理即可求出DM.
解答 解:作MN⊥AD垂足為N.
∵四邊形ABCD是正方形,
∴AB=BC=CD=AD,∠ABF=∠CBF,BC∥AD,∠BAD=∠CDA=90°,
∵BF=BF,
∴△BFA≌△BFC,
∴∠BAF=∠BCF=∠CED=∠AEM,
∵∠MAF=∠BAD=90°,
∴∠BAF=∠MAE,
∴∠MAE=∠AEM,
∴MA=ME
∵AE=ED=$\frac{1}{2}$AD=2,
∴AN=NE=$\frac{1}{2}AE$=1,
∵∠MNE=∠CDE=90°,
∴MN∥CD,
∴$\frac{NE}{ED}=\frac{MN}{CD}$=$\frac{1}{2}$,
∵CD=4,
∴MN=2,
在RT△MND中,∵M(jìn)N=2,DN=3,
∴DM=$\sqrt{D{N}^{2}+M{N}^{2}}$=$\sqrt{{2}^{2}+{3}^{2}}$=$\sqrt{13}$,
故答案為$\sqrt{13}$.
點(diǎn)評 本題考查正方形的性質(zhì)、等腰三角形的判定和性質(zhì)、平行成比例的性質(zhì)、勾股定理等知識,靈活運(yùn)用這些知識是解題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | ∠AEB=∠FEC | B. | ∠AEF=90° | C. | E是BC的中點(diǎn) | D. | $BE=\frac{2}{3}BC$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com