【題目】如圖,邊長(zhǎng)為4的等邊三角形AOB的頂點(diǎn)O在坐標(biāo)原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)B在第一象限.點(diǎn)P從點(diǎn)O出發(fā),沿x軸以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)A勻速運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí)停止運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間是t秒.將線段BP的中點(diǎn)繞點(diǎn)P按順時(shí)針?lè)较蛐D(zhuǎn)60°得點(diǎn)C,點(diǎn)C隨點(diǎn)P的運(yùn)動(dòng)而運(yùn)動(dòng),連接CP、CA.過(guò)點(diǎn)P作PD⊥OB于D點(diǎn)

(1)直接寫(xiě)出BD的長(zhǎng)并求出點(diǎn)C的坐標(biāo)(用含t的代數(shù)式表示)
(2)在點(diǎn)P從O向A運(yùn)動(dòng)的過(guò)程中,△PCA能否成為直角三角形?若能,求t的值.若不能,請(qǐng)說(shuō)明理由;
(3)點(diǎn)P從點(diǎn)O運(yùn)動(dòng)到點(diǎn)A時(shí),點(diǎn)C運(yùn)動(dòng)路線的長(zhǎng)是多少?

【答案】
(1)解:∵△AOB是等邊三角形,

∴OB=OA=AB=4,∠BOA=∠OAB=∠ABO=60°.

∵PD⊥OB,

∴∠PDO=90°,

∴∠OPD=30°,

∴OD= OP.

∵OP=t,

∴OD= t,

∴BD=4﹣ t.

在Rt△OPD中,由勾股定理,得PD= t,

如圖(1),過(guò)C作CE⊥OA于E,

則∠PEC=90°,

∵線段BP的中點(diǎn)繞點(diǎn)P按順時(shí)針?lè)较蛐D(zhuǎn)60°得點(diǎn)C,

∴∠BPC=60°.

∵∠OPD=30°,

∴∠BPD+∠CPE=90°.

∴∠DBP=∠CPE

∴△PCE∽△BPD,

= = ,

= = ,

∴CE= ,PE=2﹣ ,

∴OE=OP+PE=2+

∴C(2+ ,


(2)解:如圖(3),當(dāng)∠PCA=90度時(shí),作CF⊥PA,

∴△PCF∽△ACF,

= ,

∴CF2=PFAF,

∵PF=2﹣ t,AF=4﹣OF=2﹣ t,CF= t,

∴( t)2=(2﹣ t)(2﹣ t),

解得t=2,

此時(shí)P是OA的中點(diǎn).

如圖(2),

當(dāng)∠CAP=90°時(shí),C的橫坐標(biāo)就是4,

∴2+ t=4,

解得t=


(3)解:設(shè)C(x,y),

∴x=2+ t,y= t,

∴y= x﹣ ,

∴C點(diǎn)的運(yùn)動(dòng)痕跡是一條線段(0≤t≤4).

當(dāng)t=0時(shí),C1(2,0),

當(dāng)t=4時(shí),C2(5, ),

∴由兩點(diǎn)間的距離公式得:C1C2=2

故點(diǎn)C運(yùn)動(dòng)路線的長(zhǎng)為:2


【解析】(1)利用30度角的性質(zhì)和旋轉(zhuǎn)性質(zhì)、相似三角形性質(zhì),即△PCE∽△BPD,對(duì)應(yīng)邊成比例可求出C坐標(biāo);(2)可先假設(shè)△PCA能成為直角三角形,分類討論,當(dāng)∠PCA=90度時(shí)或∠CAP=90°,可利用相似性質(zhì)列出對(duì)應(yīng)邊成比例式子,進(jìn)行求解;(3)可設(shè)出設(shè)C(x,y),構(gòu)建參數(shù)方程x=2+ t,y= t,消去參數(shù)即可得到y(tǒng)= x﹣ .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABOC,A(04),B(a,b)C(c,0),并且ac滿足c+10.一動(dòng)點(diǎn)P從點(diǎn)A出發(fā),在線段AB上以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)B運(yùn)動(dòng);動(dòng)點(diǎn)Q從點(diǎn)O出發(fā)在線段OC上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)C運(yùn)動(dòng),點(diǎn)P,Q分別從點(diǎn)AO同時(shí)出發(fā),當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)Q隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(秒).

1)求B,C兩點(diǎn)的坐標(biāo);

2)當(dāng)t為何值時(shí),四邊形PQCB是平行四邊形?

3)點(diǎn)D為線段OC的中點(diǎn),當(dāng)t為何值時(shí),OPD是等腰三角形?直接寫(xiě)出t的所有值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)O為對(duì)角線AC的中點(diǎn),過(guò)點(diǎn)o作射線OG、ON分別交AB,BC于點(diǎn)E,F(xiàn),且∠EOF=90°,BO、EF交于點(diǎn)P.則下列結(jié)論中:
⑴圖形中全等的三角形只有兩對(duì);
⑵正方形ABCD的面積等于四邊形OEBF面積的4倍;
⑶BE+BF= OA;
⑷AE2+CF2=2OPOB.
正確的結(jié)論有( )個(gè).

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲船勻速順流而下從港到港,同時(shí)乙船勻速逆流而上從港到港,港處于、兩港的正中間,某個(gè)時(shí)刻,甲船接到通知需立即掉頭逆流而上到處,到處后迅速按原順流速度駛向港,最后甲、乙兩船都到達(dá)了各自的目的地.甲、乙兩船在靜水中的速度相同,設(shè)甲、乙兩船與港的距離之和為,行駛時(shí)間為,的部分關(guān)系如圖,則當(dāng)兩船在、間某處相超時(shí),兩船距離港的距離為________千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,從點(diǎn)P1(﹣1,0),P2(﹣1,﹣1),P31,﹣1),P41,1),P5(﹣2,1),P6(﹣2,﹣2),…依次擴(kuò)展下去,則P2020的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一個(gè)長(zhǎng)5m的梯子AB,斜靠在一豎直的墻AO上,這時(shí)AO的距離為4m,如果梯子的頂端A沿墻下滑1m至C點(diǎn).

(1)求梯子底端B外移距離BD的長(zhǎng)度;

(2)猜想CE與BE的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知⊙A經(jīng)過(guò)點(diǎn)E,B,C,O,且C(0,6)、E(﹣8,0)、O(0,0),則cos∠OBC的值為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們定義:有一組對(duì)角相等而另一組對(duì)角不相等的凸四邊形叫做“湘一四邊形”.

1)已知:如圖1,四邊形是“湘一四邊形”,,,.則 , ,若,則 (直接寫(xiě)答案)

2)已知:在“湘一四邊形”中,,,.求對(duì)角線的長(zhǎng)(請(qǐng)畫(huà)圖求解),

3)如圖(2)所示,在四邊形中,若,當(dāng)時(shí),此時(shí)四邊形是否是“湘一四邊形”,若是,請(qǐng)說(shuō)明理由:若不是,請(qǐng)進(jìn)一步判斷它的形狀,并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市荸薺喜獲豐收,某生產(chǎn)基地收獲荸薺40噸.經(jīng)市場(chǎng)調(diào)查,可采用批發(fā)、零售、加工銷售三種銷售方式,這三種銷售方式每噸荸薺的利潤(rùn)如下表:

銷售方式 批發(fā) 零售 加工銷售

利潤(rùn)(百元/噸) 12 22 30

設(shè)按計(jì)劃全部售出后的總利潤(rùn)為y百元,其中批發(fā)量為x噸,且加工銷售量為15噸.

1)求yx之間的函數(shù)關(guān)系式;

2)若零售量不超過(guò)批發(fā)量的4倍,求該生產(chǎn)基地按計(jì)劃全部售完荸薺后獲得的最大利潤(rùn).

查看答案和解析>>

同步練習(xí)冊(cè)答案