【題目】每年的6月5日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購(gòu)買(mǎi)10臺(tái)節(jié)省能源的新設(shè)備,現(xiàn)有甲、乙兩種型號(hào)的設(shè)備可供選購(gòu),經(jīng)調(diào)查:購(gòu)買(mǎi)了3臺(tái)甲型設(shè)備比購(gòu)買(mǎi)2臺(tái)乙型設(shè)備多花了16萬(wàn)元,購(gòu)買(mǎi)2臺(tái)甲型設(shè)備比購(gòu)買(mǎi)3臺(tái)乙型設(shè)備少花6萬(wàn)元.
(1)求甲、乙兩種型號(hào)設(shè)備的價(jià)格;
(2)該公司經(jīng)預(yù)算決定購(gòu)買(mǎi)節(jié)省能源的新設(shè)備的資金不超過(guò)110萬(wàn)元,你認(rèn)為該公司有幾種購(gòu)買(mǎi)方案;
(3)在(2)的條件下,已知甲型設(shè)備的產(chǎn)量為240噸/月,乙型設(shè)備的產(chǎn)量為180噸/月,若每月要求總產(chǎn)量不低于2040噸,為了節(jié)約資金,請(qǐng)你為該公司設(shè)計(jì)一種最省錢(qián)的購(gòu)買(mǎi)方案.
【答案】(1)甲,乙兩種型號(hào)設(shè)備每臺(tái)的價(jià)格分別為12萬(wàn)元和10萬(wàn)元;(2)有6種購(gòu)買(mǎi)方案;(3)最省錢(qián)的購(gòu)買(mǎi)方案是選購(gòu)甲型設(shè)備4臺(tái),乙型設(shè)備6臺(tái).
【解析】
(1)設(shè)甲、乙兩種型號(hào)設(shè)備每臺(tái)的價(jià)格分別為萬(wàn)元和萬(wàn)元,根據(jù)購(gòu)買(mǎi)了3臺(tái)甲型設(shè)備比購(gòu)買(mǎi)2臺(tái)乙型設(shè)備多花了16萬(wàn)元,購(gòu)買(mǎi)2臺(tái)甲型設(shè)備比購(gòu)買(mǎi)3臺(tái)乙型設(shè)備少花6萬(wàn)元可列出方程組,解之即可;
(2)設(shè)購(gòu)買(mǎi)甲型設(shè)備臺(tái),乙型設(shè)備臺(tái),根據(jù)購(gòu)買(mǎi)節(jié)省能源的新設(shè)備的資金不超過(guò)110萬(wàn)元列不等式,解之確定m的值,即可確定方案;
(3)因?yàn)楣疽竺吭碌漠a(chǎn)量不低于2040噸,據(jù)此可得關(guān)于m的不等式,解之即可由m的值確定方案,然后進(jìn)行比較,做出選擇即可.
(1)設(shè)甲、乙兩種型號(hào)設(shè)備每臺(tái)的價(jià)格分別為萬(wàn)元和萬(wàn)元,
由題意得:,
解得:,
則甲,乙兩種型號(hào)設(shè)備每臺(tái)的價(jià)格分別為12萬(wàn)元和10萬(wàn)元;
(2)設(shè)購(gòu)買(mǎi)甲型設(shè)備臺(tái),乙型設(shè)備臺(tái),
則,
∴,
∵取非負(fù)整數(shù),
∴,
∴有6種購(gòu)買(mǎi)方案;
(3)由題意:,
∴,
∴為4或5,
當(dāng)時(shí),購(gòu)買(mǎi)資金為:(萬(wàn)元),
當(dāng)時(shí),購(gòu)買(mǎi)資金為:(萬(wàn)元),
則最省錢(qián)的購(gòu)買(mǎi)方案是選購(gòu)甲型設(shè)備4臺(tái),乙型設(shè)備6臺(tái).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊三角形ABC中,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接BE,CD,點(diǎn)M,N,P分別是BE,CD,BC的中點(diǎn),連接DE,PM,PN,MN.
(1)觀察猜想,如圖中ΔPMN是_______(填特殊三角形的名稱)
(2)探究證明,如圖,ΔADE繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn),則ΔPMN的形狀是否發(fā)生改變?并就如圖說(shuō)明理由.
(3)拓展延伸,若ΔADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),AD=2,AB=6,請(qǐng)直接寫(xiě)出ΔPMN的周長(zhǎng)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠ABC的平分線交AC于點(diǎn)E,過(guò)點(diǎn)E作BE的垂線交AB于點(diǎn)F,⊙O是△BEF的外接圓.
(1)求證:AC是⊙O的切線;
(2)過(guò)點(diǎn)E作EH⊥AB,垂足為H,求證:CD=HF;
(3)若CD=1,EH=3,求BF及AF長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)的圖象與反比例函數(shù) (k ≠ 0) 在第一象限內(nèi)的圖象交于點(diǎn)A(1,m).
(1) 求反比例函數(shù)的表達(dá)式;
(2) 點(diǎn)B在反比例函數(shù)的圖象上, 且點(diǎn)B的橫坐標(biāo)為2. 若在x軸上存在一點(diǎn)M,使MA+MB的值最小,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在正方形中,點(diǎn)是的中點(diǎn),點(diǎn)是對(duì)角線上一動(dòng)點(diǎn),設(shè)的長(zhǎng)度為與的長(zhǎng)度和為,圖②是關(guān)于的函數(shù)圖象,則圖象上最低點(diǎn)的坐標(biāo)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,將拋物線平移到頂點(diǎn)恰好落在直線上,并設(shè)此時(shí)拋物線頂點(diǎn)的橫坐標(biāo)為.
(1)求拋物線的解析式(用含、的代數(shù)式表示);
(2)如圖②,與拋物線交于、、三點(diǎn),,軸,,.
①求的面積(用含的代數(shù)式表示);
②若的面積為1,當(dāng)時(shí),的最大值為-3,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為了鼓勵(lì)居民節(jié)約用水,采用分段計(jì)費(fèi)的方法按月計(jì)算每戶家庭的水費(fèi),月用水量不超過(guò)20時(shí),按2元/計(jì)費(fèi);月用水量超過(guò)20時(shí),其中的20仍按2元/收費(fèi),超過(guò)部分按元/計(jì)費(fèi).設(shè)每戶家庭用用水量為時(shí),應(yīng)交水費(fèi)元.
(1)分別求出和時(shí)與的函數(shù)表達(dá)式;
(2)小明家第二季度交納水費(fèi)的情況如下:
月份 | 四月份 | 五月份 | 六月份 |
交費(fèi)金額 | 30元 | 34元 | 42.6元 |
小明家這個(gè)季度共用水多少立方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一段河壩的斷面為梯形ABCD,試根據(jù)圖中數(shù)據(jù),求出坡角和壩底寬AD.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】港珠澳大橋,從2009年開(kāi)工建造,于2018年10月24日正式通車(chē).其全長(zhǎng)55公里,連接港珠澳三地,集橋、島、隧于一體,是世界上最長(zhǎng)的跨海大橋.如圖是港珠澳大橋的海豚塔部分效果圖,為了測(cè)得海豚塔斜拉索頂端A距離海平面的高度,先測(cè)出斜拉索底端C到橋塔的距離(CD的長(zhǎng))約為100米,又在C點(diǎn)測(cè)得A點(diǎn)的仰角為30°,測(cè)得B點(diǎn)的俯角為20°,求斜拉索頂端A點(diǎn)到海平面B點(diǎn)的距離(AB的長(zhǎng)).(已知≈1.73,tan20°≈0.36,結(jié)果精確到0.1)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com