【題目】已知拋物線經(jīng)過點A(3,0),B(﹣1,0).
(1)求拋物線的解析式;
(2)求拋物線的頂點坐標.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點C是直線l1上一點,在同一平面內(nèi),把一個等腰直角三角板ABC任意擺放,其中直角頂點C與點C重合,過點A作直線l2⊥l1,垂足為點M,過點B作l3⊥l1,垂足為點N
(1)當(dāng)直線l2,l3位于點C的異側(cè)時,如圖1,線段BN,AM與MN之間的數(shù)量關(guān)系 (不必說明理由);
(2)當(dāng)直線l2,l3位于點C的右側(cè)時,如圖2,判斷線段BN,AM與MN之間的數(shù)量關(guān)系,并說明理由;
(3)當(dāng)直線l2,l3位于點C的左側(cè)時,如圖3,請你補全圖形,并直接寫出線段BN,AM與MN之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于二次函數(shù) y ax2 2a 1x a 1a 0,有下列結(jié)論:①其圖象與 x 軸一定相交;②若 a 0 , 函數(shù)在 x 1 時,y 隨 x 的增大而減小;③無論 a 取何值,拋物線的頂點始終在同一條直線上;④無論 a 取何值,函數(shù)圖象都經(jīng)過同一個點.其中所有正確的結(jié)論是:( )
A. ①②③ B. ①③④ C. ①②④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AD是△ABC的角平分線,AD的中垂線交AB于點F,交BC的延長線于點E.以下四個結(jié)論:(1)∠EAD=∠EDA;(2)DF∥AC;(3)∠FDE=90°;(4)∠B=∠CAE.恒成立的結(jié)論有( )
A. (1)(2)B. (2)(3)(4)C. (1)(2)(4)D. (1)(2)(3)(4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰Rt△ABC和△CDE,AC=BC,CD=CE,連接BE、AD,P為BD中點,M為AB中點、N為DE中點,連接PM、PN、MN.
(1)試判斷△PMN的形狀,并證明你的結(jié)論;
(2)若CD=5,AC=12,求△PMN的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,點D,E是邊BC上的兩點,且AB=BE,AC=CD.
(1)若∠BAC =90°,求∠DAE的度數(shù);
(2)若∠BAC=120°,直接寫出∠DAE的度數(shù)
(3)設(shè)∠BAC=α,∠DAE=β,猜想α與β的之間數(shù)量關(guān)系(不需證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,正方形A的一個頂點與正方形B的對稱中心重合,重疊部分面積是正方形A面積的,如圖②,移動正方形A的位置,使正方形B的一個頂點與正方形A的對稱中心重合,則重疊部分面積是正方形B面積的( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的袋子里裝有黑白兩種顏色的球其40只,這些球除顏色外都相同.小明從袋子中隨機摸一個球,記下顏色后放回,不斷重復(fù),并繪制了如圖所示的統(tǒng)計圖,根據(jù)統(tǒng)計圖提供的信息解決下列問題:
(1)摸到黑球的頻率會接近 (精確到0.1);
(2)估計袋中黑球的個數(shù)為 只:
(3)若小明又將一些相同的黑球放進了這個不透明的袋子里,然后再次進行摸球試驗,當(dāng)重復(fù)大量試驗后,發(fā)現(xiàn)黑球的頻率穩(wěn)定在0.6左右,則小明后來放進了 個黑球.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明騎自行車去郊外春游,他離家的距離y(千米)與所用時間x(小時)之間的關(guān)系如圖,根據(jù)圖象回答:
(1)小明到達離家最遠的地方需幾小時?此時離家多遠?
(2)小明出發(fā)兩個半小時時離家多遠?
(3)小明出發(fā)多長時間離家12.5千米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com