【題目】如圖,正比例函數(shù)ykx與反比例函數(shù)yx0)的圖象有個交點AABx軸于點B.平移正比例函數(shù)ykx的圖象,使其經(jīng)過點B20),得到直線l,直線ly交于點C0,﹣3

1)求km的值;

2)點M是直線OA上一點過點MMNAB,交反比例函數(shù)yx0)的圖象于點N,若線段MN3,求點M的坐標.

【答案】(1),m=6 (2)()或(,

【解析】

(1)利用待定系數(shù)法即可解決問題;(2)設點M(x,x),N(x,),利用MN//AB, MN=3,列方程求解即可.

(1)∵直線l與y軸交于點(0,-3),且過點 B(2,0),

設直線l的解析式為y=ax-3,代入點B(2,0),解得a=

∵直線l與正比例函數(shù)y=kx平行,∴k=a=,

∵y=x過點 A,AB⊥x軸于點B,∴A(2,3)

∵y=過點A,∴m=6;

(2)設點M(x,x),N(x,),

∵MN//AB, MN=3, ∴ x-=3,或x-=-3,

解得:,或(舍去負值),

∴點M的坐標為(,)或(,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A,B兩地之間有條河,原來從A地到B地需要經(jīng)過橋DC,沿折線ADCB到達,現(xiàn)在新建了橋EF,可直接沿直線ABA地到達B地.已知BC=11km,∠A=45°,∠B=37°,橋DCAB平行,橋DC與橋EF的長相等.

1)求點D到直線AB的距離;

2)現(xiàn)在從A地到B地可比原來少走多少路程?

(結果保留小數(shù)點后一位.參考數(shù)據(jù):1.41,sin37°≈0.60,cos37°≈0.80).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正比例函數(shù)與反比例函數(shù)的圖象相交于AB、兩點,分別以AB、兩點為圓心,畫與x軸相切的兩個圓,若點A的坐標為(2,1),則圖中兩個陰影部分面積的和是(  )

A. B. C. π D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)ykx+b與反比例函數(shù)y的圖象交于A(14),B(4,n)兩點.

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)直接寫出當x0時,kx+b的解集.

(3)Px軸上的一動點,試確定點P并求出它的坐標,使PA+PB最。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班“數(shù)學興趣小組”對函數(shù)y+x的圖象與性質(zhì)進行了探究,探究過程如下,請補充完整.

(1)函數(shù)y+x的自變量x的取值范圍是   

(2)下表是yx的幾組對應值.

x

3

2

1

0

2

3

4

5

y

1

3

m

m的值;

(3)如圖,在平面直角坐標系xOy中,描出了以上表中各對對應值為坐標的點,根據(jù)描出的點,畫出該函數(shù)的圖象;

(4)進一步探究發(fā)現(xiàn),該函數(shù)圖象在第一象限內(nèi)的最低點的坐標是(2,3),結合函數(shù)的圖象,寫出該函數(shù)的其它性質(zhì)(一條即可)   

(5)小明發(fā)現(xiàn),該函數(shù)的圖象關于點(   ,   )成中心對稱;

該函數(shù)的圖象與一條垂直于x軸的直線無交點,則這條直線為   ;

直線ym與該函數(shù)的圖象無交點,則m的取值范圍為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c經(jīng)過點(﹣1,0),對稱軸l如圖所示,則下列結論:abc>0;a﹣b+c=0;2a+c<0;a+b<0,其中所有正確的結論是(

A.①③ B.②③ C.②④ D.②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:如圖①,拋物線y=ax2+bx+c(a≠0)與x軸交于A,B兩點,點P在該拋物線上(P點與A、B兩點不重合).如果△ABP的三邊滿足AP2+BP2=AB2,則稱點P為拋物線y=ax2+bx+c(a≠0)的勾股點.

(1)直接寫出拋物線y=-x2+1的勾股點的坐標.

(2)如圖②,已知拋物線y=ax2+bx(a≠0)與x軸交于A,B兩點,點P(1, )是拋物線的勾股點,求拋物線的函數(shù)表達式.

(3)在(2)的條件下,點Q在拋物線上,求滿足條件S△ABQ=S△ABP的Q點(異于點P)的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,把RtABCRtDEF按圖1擺放,(點CE點重合),點B、C、EF始終在同一條直線上,∠ACB=EDF=90°,∠DEF=45°,AC=8,BC=6,EF=10,如圖2DEF從圖1出發(fā),以每秒1個單位的速度沿CBABC勻速運動,同時,點PA出發(fā),沿AB以每秒1個單位向點B勻速移動,ACDEF的直角邊相交于Q,當P到達終點B時,DEF同時停止運動,連接PQ,設移動的時間為ts).解答下列問題:

(1)DEF在平移的過程中,當點DRtABC的邊AC上時,求t的值;

(2)在移動過程中,是否存在APQ為等腰三角形?若存在,求出t的值;若不存在,說明理由.

(3)在移動過程中,當0t≤5時,連接PE,是否存在PQE為直角三角形?若存在,求出t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,把RtABCRtDEF按圖1擺放,(點CE點重合),點B、C、E、F始終在同一條直線上,∠ACB=EDF=90°,∠DEF=45°,AC=8,BC=6,EF=10,如圖2,DEF從圖1出發(fā),以每秒1個單位的速度沿CBABC勻速運動,同時,點PA出發(fā),沿AB以每秒1個單位向點B勻速移動,ACDEF的直角邊相交于Q,當P到達終點B時,DEF同時停止運動,連接PQ,設移動的時間為ts).解答下列問題:

(1)DEF在平移的過程中,當點DRtABC的邊AC上時,求t的值;

(2)在移動過程中,是否存在APQ為等腰三角形?若存在,求出t的值;若不存在,說明理由.

(3)在移動過程中,當0t≤5時,連接PE,是否存在PQE為直角三角形?若存在,求出t的值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案