【題目】如圖,AB為半圓O的直徑,AC是⊙O的一條弦,D為的中點,作DE⊥AC,交AB的延長線于點F,連接DA.
(1)求證:EF為半圓O的切線;
(2)若DA=DF=,求陰影區(qū)域的面積.(結(jié)果保留根號和π)
【答案】(1)證明見解析;(2)﹣6π.
【解析】試題分析:(1)直接利用切線的判定方法結(jié)合圓心角定理分析得出OD⊥EF,即可得出答案;
(2)直接利用得出S△ACD=S△COD,再利用S陰影=S△AED﹣S扇形COD,求出答案.
試題解析:解:(1)連接OD,∵D為的中點,∴∠CAD=∠BAD,∵OA=OD,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∵DE⊥AC,∴∠E=90°,∴∠CAD+∠EDA=90°,即∠ADO+∠EDA=90°,∴OD⊥EF,∴EF為半圓O的切線;
(2)連接OC與CD,∵DA=DF,∴∠BAD=∠F,∴∠BAD=∠F=∠CAD,又∵∠BAD+∠CAD+∠F=90°,∴∠F=30°,∠BAC=60°,∵OC=OA,∴△AOC為等邊三角形,∴∠AOC=60°,∠COB=120°,∵OD⊥EF,∠F=30°,∴∠DOF=60°,在Rt△ODF中,DF=,∴OD=DFtan30°=6,在Rt△AED中,DA=,∠CAD=30°,∴DE=DAsin30°=,EA=DAcos30°=9.
∵∠COD=180°-∠AOC-∠DOF=60°,由CO=DO,∴△COD是等邊三角形,∴∠OCD=60°,∴∠DCO=∠AOC=60°,∴CD∥AB.故S△ACD=S△COD,∴S陰影=S△AED﹣S扇形COD=×9×﹣=﹣6π.
科目:初中數(shù)學 來源: 題型:
【題目】有20筐白菜,以每筐25千克為標準,超過或不足的千克數(shù)分別用正、負數(shù)來表示,記錄如下:
(1)20筐白菜中,最重的一筐比最輕的一筐多重多少千克?
(2)與標準重量比較,20筐白菜總計超過或不足多少千克?
(3)若白菜每千克售價2.8元,則出售這20筐白菜可賣多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兒童服裝店老板以50元的價格購進20件衣服,針對不同的顧客,20件衣服的售價不完全相同,若以68元為標準,將超出的錢數(shù)記為正,不足的錢數(shù)記為負,記錄結(jié)果如下表:
售出件數(shù) | 5 | 4 | 2 | 1 | 7 | 1 |
售價 | +2 | +3 | +1 | 0 | —2 | —1 |
(1)問該服裝店售完這20件衣服后,賺了多少錢?
(2)老板為了促銷,對購買價格不低于標準的每個顧客送了價值5元的小禮物,如果不考慮其他因素,這20件衣服實際賺了多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明家的洗手盆上裝有一種抬啟式水龍頭(如圖1),完全開啟后,水流路線呈拋物線,把手端點A,出水口B和落水點C恰好在同一直線上,點A至出水管BD的距離為12cm,洗手盆及水龍頭的相關(guān)數(shù)據(jù)如圖2所示,現(xiàn)用高10.2cm的圓柱型水杯去接水,若水流所在拋物線經(jīng)過點D和杯子上底面中心E,則點E到洗手盆內(nèi)側(cè)的距離EH為_________cm.
(第16題圖)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知數(shù)軸上三點M,O,N對應(yīng)的數(shù)分別為-3,0,1,點P為數(shù)軸上任意一點,其對應(yīng)的數(shù)為x.
(1)如果點P到點M,點N的距離相等,那么x的值是______;
(2)數(shù)軸上是否存在點P,使點P到點M,點N的距離之和是5?若存在,請直接寫出x的值;若不存在,請說明理由.
(3)如果點P以每分鐘3個單位長度的速度從點O向左運動時,點M和點N分別以每分鐘1個單位長度和每分鐘4個單位長度的速度也向左運動,且三點同時出發(fā),那么幾分鐘時點P到點M,點N的距離相等.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】夫子廟派出所巡警騎摩托車在東西大道上巡邏,某天他從崗亭出發(fā),晚上停留在處,規(guī)定向東方向為正,當天行駛記錄如下(單位:千米):,,,,,,.
(1)該巡警巡邏時離崗亭最遠是多少千米.
(2)若摩托車每行千米耗油升,那么該摩托車這天巡邏共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個幾何體由大小相同的正方體搭成,從上面看到的幾何體的形的形狀狀圖如圖所示,其中小正方形中的數(shù)字表示在該位置的小正方體的個數(shù),
(1)請畫出從正面和左面看到的這個幾何體的形狀圖.
(2)若每個小正方圖的棱長都為1,則搭成的這個幾何體的體積為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com