A. | 3 | B. | 6 | C. | 3$\sqrt{3}$ | D. | 6$\sqrt{3}$ |
分析 由四邊形ABCD為菱形,得到四條邊相等,對角線垂直且互相平分,根據(jù)∠BAD=60°得到三角形ABD為等邊三角形,在直角三角形ABO中,利用勾股定理求出OA的長,即可確定出AC的長.
解答 解:如圖,連接BD,交AC于點O.
解:∵四邊形ABCD為菱形,
∴AC⊥BD,OA=OC,OB=OD,AB=BC=CD=AD=24÷4=6,
∵∠BAD=60°,
∴△ABD為等邊三角形,
∴BD=AB=6(米),OD=OB=3,
在Rt△AOB中,根據(jù)勾股定理得:OA=$\sqrt{{6}^{2}-{3}^{2}}$=3$\sqrt{3}$,
則AC=2OA=6$\sqrt{3}$,
故選:D.
點評 此題考查了勾股定理,菱形的性質(zhì),以及等邊三角形的判定與性質(zhì),熟練掌握菱形的性質(zhì)是解本題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com