【題目】某我市花石鎮(zhèn)組織10輛汽車裝運完A、B、C三種不同品質的湘蓮共100噸到外地銷售,按計劃10輛汽車都要裝滿,且每輛汽車只能裝同一種湘蓮,根據(jù)下表提供的信息,解答以下問題:
(1)設裝運A種湘蓮的車輛數(shù)為x,裝運B種湘蓮的車輛數(shù)為y,求y與x之間的函數(shù)關系式;
(2)如果裝運每種湘蓮的車輛數(shù)都不少于2輛,那么車輛的安排方案有幾種?并寫出每種安排方案;
(3)若要使此次銷售獲利最大,應采用哪種安排方案?并求出最大利潤的值.
湘蓮品種 | A | B | C |
每輛汽車運載量(噸) | 12 | 10 | 8 |
每噸湘蓮獲利(萬元) | 3 | 4 | 2 |
【答案】(1)y=10﹣2x;(2)有3種安排方案:方案一:裝A種2輛車,裝B種6輛車,裝C種2輛車;方案二:裝A種3輛車,裝B種4輛車,裝C種3輛車;方案三:裝A種4輛車,裝B種2輛車,裝C種4輛車;(3)裝A種2輛車,裝B種6輛車,裝C種2輛車,最大利潤為344萬元.
【解析】
(1)根據(jù)題意列式:12x+10y+8(10-x-y)=100,變形后即可得到y=10﹣2x;
(2)根據(jù)裝運每種水果的車輛數(shù)都不少于2輛,x≥2,y≥2,解不等式組即可;
(3)結合題意,設最大利潤為W(萬元),依題意可列出表示式,W=-28x+400,可知函數(shù)為減函數(shù),即可得出當x=2時,W最大.
解:(1)設裝A種為x輛,裝B種為y輛,則裝C種為10﹣x﹣y輛,
由題意得:12x+10y+8(10﹣x﹣y)=100,
∴y=10﹣2x;
(2)10-x-y=10-x-(10-2x)=x,
故裝C種湘蓮的車也為 x 輛,
∴
解得:2≤x≤4.x為整數(shù),
∴x=2,3,4,
故車輛有3種安排方案,方案如下:
方案一:裝A種2輛車,裝B種6輛車,裝C種2輛車;
方案二:裝A種3輛車,裝B種4輛車,裝C種3輛車;
方案三:裝A種4輛車,裝B種2輛車,裝C種4輛車;
(3)設銷售利潤為W(萬元),則
W=3×12x+4×10×(10﹣2x)+2×8x=﹣28x+400,
∴W是x的一次函數(shù),且x增大時,W減少,
∴x=2時,即方案為:裝A種2輛車,裝B種6輛車,裝C種2輛車,
利潤W最大=400﹣28×2=344(萬元).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A、B兩點的坐標分別為(―2,0),(0,1),⊙C的圓心坐標為(0,―1),半徑為1.若D是⊙C上的一個動點,射線AD與y軸交于點E,則△ABE面積的最大值是( )
A. 4 B. C. D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O與BC交于點D,與AC交于點F,過點D作⊙O的切線交AC于E.
(1)求證:AD2=ABAE;
(2)若AD=2,AF=3,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別為A(﹣5,1),B(﹣2,2),C(﹣1,4),請按下列要求畫圖:
(1)將△ABC先向右平移4個單位長度、再向下平移1個單位長度,得到△A1B1C1,畫出△A1B1C1;
(2)畫出與△ABC關于原點O成中心對稱的△A2B2C2,并直接寫出點A2的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線l1:y=x-3與x軸,y軸分別交于點A和點B.
(1)求點A和點B的坐標;
(2)將直線l1向上平移6個單位后得到直線l2,求直線l2的函數(shù)解析式;
(3)設直線l2與x軸的交點為M,則△MAB的面積是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c交y軸于點A(0,4),交x軸于點B(4,0),點P是拋物線上一動點,過點P作x軸的垂線PQ,過點A作AQ⊥PQ于點Q,連接AP.
(1)填空:拋物線的解析式為 ,點C的坐標 ;
(2)點P在拋物線上運動,若△AQP∽△AOC,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對的圓周角的度數(shù)是( 。
A. 30° B. 60° C. 30°或150° D. 60°或120°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,△ADF繞著點A順時旋轉90°得到△ABE,若AF=4,AB=7.
(1)求DE的長度;
(2)指出BE與DF的關系如何?并說明由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某食品零售店為食品廠代銷一種面包,未售出的面包可以退回廠家.經(jīng)統(tǒng)計銷售情況發(fā)現(xiàn),當這種面包的銷售單價為7角時,每天賣出160個.在此基礎上.單價每提高1角時,該零售店每天就會少賣出20個面包.設這種面包的銷售單價為x角(每個面包的成本是5角).零售店每天銷售這種面包的利潤為y角.
(1)用含x的代數(shù)式分別表示出每個面包的利潤與賣出的面包個數(shù);
(2)求x與y之間的函數(shù)關系式:
(3)當這種面包的銷售單價定為多少時,該零售店每天銷售這種面包獲得的利潤最大?最大利潤為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com