【題目】已知關(guān)于的一元二次方程有實(shí)數(shù)根.
(1)求的取值范圍.
(2)若該方程的兩個(gè)實(shí)數(shù)根為、,且,求的值.
【答案】(1).(2).
【解析】
(1)根據(jù)方程的系數(shù)結(jié)合根的判別式△≥0,即可得出關(guān)于m的一元一次不等式,解之即可得出m的取值范圍;
(2)由根與系數(shù)的關(guān)系可得出x1+x2=6,x1x2=4m+1,結(jié)合|x1-x2|=4可得出關(guān)于m的一元一次方程,解之即可得出m的值.
(1)∵關(guān)于x的一元二次方程x2-6x+(4m+1)=0有實(shí)數(shù)根,
∴△=(-6)2-4×1×(4m+1)≥0,
解得:m≤2;
(2)∵方程x2-6x+(4m+1)=0的兩個(gè)實(shí)數(shù)根為x1、x2,
∴x1+x2=6,x1x2=4m+1,
∴(x1-x2)2=(x1+x2)2-4x1x2=42,即32-16m=16,
解得:m=1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校有名學(xué)生,為了解全校學(xué)生的上學(xué)方式,該校數(shù)學(xué)興趣小組以問卷調(diào)查的形式,隨機(jī)調(diào)查了該校部分學(xué)生的主要上學(xué)方式(參與問卷調(diào)查的學(xué)生只能從以下六個(gè)種類中選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.
根據(jù)以上信息,回答下列問題:
(1)參與本次問卷調(diào)查的學(xué)生共有_____人,其中選擇類的人數(shù)有_____人;
(2)在扇形統(tǒng)計(jì)圖中,求類對(duì)應(yīng)的扇形圓心角的度數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若將這四類上學(xué)方式視為“綠色出行”,請(qǐng)估計(jì)該校選擇“綠色出行”的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB=3,BC=2,∠DAB=60°,E在AB上,且AE=EB,F是BC的中點(diǎn),過D分別作DP⊥AF于P,DQ⊥CE于Q,則DP:DQ的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】紅旗連鎖超市準(zhǔn)備購進(jìn)甲、乙兩種綠色袋裝食品.甲、乙兩種綠色袋裝食品的進(jìn)價(jià)和售價(jià)如表.已知:用2000元購進(jìn)甲種袋裝食品的數(shù)量與用1600元購進(jìn)乙種袋裝食品的數(shù)量相同.
甲 | 乙 | |
進(jìn)價(jià)(元/袋) | ||
售價(jià)(元/袋) | 20 | 13 |
(1)求的值;
(2)要使購進(jìn)的甲、乙兩種綠色袋裝食品共800袋的總利潤(利潤=售價(jià)-進(jìn)價(jià))不少于4800元,且不超過4900元,問該超市有幾種進(jìn)貨方案?
(3)在(2)的條件下,該超市如果對(duì)甲種袋裝食品每袋優(yōu)惠元出售,乙種袋裝食品價(jià)格不變.那么該超市要獲得最大利潤應(yīng)如何進(jìn)貨?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過點(diǎn)(﹣1,0),對(duì)稱軸l如圖所示,則下列結(jié)論:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正確的結(jié)論是( )
A.①③ B.②③ C.②④ D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象交軸于兩點(diǎn),交軸于點(diǎn),點(diǎn)的坐標(biāo)為,頂點(diǎn)的坐標(biāo)為.
(1)求二次函數(shù)的解析式和直線的解析式;
(2)點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作軸的垂線,交拋物線于點(diǎn),當(dāng)點(diǎn)在第一象限時(shí),求線段長(zhǎng)度的最大值;
(3)在拋物線上是否存在異于的點(diǎn),使中邊上的高為,若存在求出點(diǎn)的坐標(biāo);若不存在請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,E、F分別在OD、OC上,且DE=CF,連接DF、AE,AE的延長(zhǎng)線交DF于點(diǎn)M.
(1)求證:AE=DF;
(2)求證:AM⊥DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的對(duì)稱軸是直線且與軸相交于兩點(diǎn),與軸交于點(diǎn)點(diǎn)的坐標(biāo)為.
求拋物線的解析式;
若點(diǎn)是第一象限內(nèi)拋物線上一點(diǎn),過點(diǎn)作直線軸于點(diǎn)交直線于點(diǎn)當(dāng)時(shí),求四邊形的面積.
在的條件下,若點(diǎn)在拋物線上,點(diǎn)在拋物線的對(duì)稱軸上,當(dāng)以點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),求出所有符合條件的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是⊙的直徑,是⊙的一條弦,,的延長(zhǎng)線交⊙于點(diǎn),交的延長(zhǎng)線于點(diǎn),連接,且恰好∥,連接交于點(diǎn),延長(zhǎng)交于點(diǎn),連接.
(1)求證:是⊙的切線;
(2)求證:點(diǎn)是的中點(diǎn);
(3)當(dāng)⊙的半徑為時(shí),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com