【題目】一個(gè)三角形的三邊的比為5:4:3,它的周長(zhǎng)為60cm,則它的面積是______cm2.
【答案】150
【解析】
設(shè)此三角形的邊長(zhǎng)分別是5x,4x,3x,根據(jù)三角形的周長(zhǎng)是60cm可得5x+4x+3x=60,解方程求得x的值,即可得三角形各邊的長(zhǎng),再根據(jù)勾股定理的逆定理判斷出其形狀,由三角形的面積公式即可求解.
∵三角形的三邊長(zhǎng)的比是5:4:3,它的周長(zhǎng)是60cm,
∴設(shè)此三角形的邊長(zhǎng)分別是5x,4x,3x,則5x+4x+3x=60,解得x=5cm,
∴此三角形的邊長(zhǎng)分別是25cm,20cm,15cm,
∵152+202=625=252,
∴此三角形是直角三角形,
∴這個(gè)三角形的面積=×15×20=150cm2.
故答案為:150.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,AB=AC,∠BAC=90°,點(diǎn)D是平面內(nèi)一點(diǎn);
(1)如圖1, BD⊥CD,∠DCA=30°,則∠BAD=
(2)如圖2,若∠BDC=45°,點(diǎn)F是CD中點(diǎn),求證:AF⊥CD;
(3)如圖3,∠BDA=3∠CBD,BD=,求△BCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,點(diǎn)在邊上,點(diǎn)在邊上,,,若為等腰三角形,則的度數(shù)為( )
A.B.或C.或D.或
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠ABC=90°,BA=BC,直線MN是過點(diǎn)A的直線CD⊥MN于點(diǎn)D,連接BD.
(1)觀察猜想張老師在課堂上提出問題:線段DC,AD,BD之間有什么數(shù)量關(guān)系.經(jīng)過觀察思考,小明出一種思路:如圖1,過點(diǎn)B作BE⊥BD,交MN于點(diǎn)E,進(jìn)而得出:DC+AD= BD.
(2)探究證明
將直線MN繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到圖2的位置寫出此時(shí)線段DC,AD,BD之間的數(shù)量關(guān)系,并證明
(3)拓展延伸
在直線MN繞點(diǎn)A旋轉(zhuǎn)的過程中,當(dāng)△ABD面積取得最大值時(shí),若CD長(zhǎng)為1,請(qǐng)直接寫BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】這是一道我們?cè)?jīng)探究過的問題:如圖1.等腰直角三角形中,,.直線經(jīng)過點(diǎn),過作于點(diǎn),過作于點(diǎn).易證得≌.(無需證明),我們將這個(gè)模型稱為“一線三等角”或者叫“K形圖”.接下來,我們就利用這個(gè)模型來解決一些問題:
(模型應(yīng)用)
(1)如圖2.已知直線l1:與與坐標(biāo)軸交于點(diǎn)A、B.以AB為直角邊作等腰直角三角形ABC,若存在,請(qǐng)求出C的坐標(biāo);不存在,若說明理由.
(2)如圖3已知直線l1:與坐標(biāo)軸交于點(diǎn)A、B.將直線l1繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°至直線l2.直線l2在x軸上方的圖像上是否存在一點(diǎn)Q,使得△QAB是以QA為底的等腰直角三角形?若存在,請(qǐng)求出直線BQ的函數(shù)關(guān)系式;若不存在,說明理由.
(拓展延伸)
(3)直線AB:與軸負(fù)半軸、軸正半軸分別交于A、B兩點(diǎn).分別以OB、AB為邊,點(diǎn)B為直角頂點(diǎn)在第一、二象限內(nèi)作等腰直角△OBF和等腰直角△ABE,連EF交y軸于P點(diǎn),如圖4,△EPB的面積是否確定?若確定,請(qǐng)求出具體的值;若不確定,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中∠ACB=90°,CD是AB邊上的高,∠BAC的角平分線AF交CD于E,則△CEF必為( )
A.等腰三角形B.等邊三角形C.直角三角形D.等腰直角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,弦BC,DE相交于點(diǎn)F,且DE⊥AB于點(diǎn)G,過點(diǎn)C作⊙O的切線交DE的延長(zhǎng)線于點(diǎn)H.
(1)求證:HC=HF;
(2)若⊙O的半徑為5,點(diǎn)F是BC的中點(diǎn),tan∠HCF=m,寫出求線段BC長(zhǎng)的思路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=30°,將△ABC繞點(diǎn)B旋轉(zhuǎn)α(0<α<60°)到△A′BC′,邊AC和邊A′C′相交于點(diǎn)P,邊AC和邊BC′相交于Q.當(dāng)△BPQ為等腰三角形時(shí),則α=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰中,,,于點(diǎn),點(diǎn)是延長(zhǎng)線上一點(diǎn),點(diǎn)是線段上一點(diǎn),.下列結(jié)論:①;②;③是等邊三角形;④.其中正確結(jié)論的個(gè)數(shù)是( )
A.1B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com