【題目】如圖,AB為半圓O的直徑,C為半圓上一點(diǎn),AC<BC.
(1)請(qǐng)用直尺(不含刻度)與圓規(guī)在BC上作一點(diǎn)D,使得直線OD平分ABC的周長(zhǎng);(不要求寫作法,但要保留作圖痕跡)
(2)在(1)的條件下,若AB=10,OD=,求△ABC的面積.
【答案】(1)如圖所示,直線OD即為所求;見解析;(2)△ABC的面積為10.
【解析】
(1)延長(zhǎng)BC,在BC延長(zhǎng)線上截取CE=CA,作BE的中垂線,垂足為D,作直線OD即可得;
(2)由作圖知OD是△ABE中位線,據(jù)此知AE=2OD=4,繼而由△ACE為等腰直角三角形得出AC=2,利用勾股定理求出BC的長(zhǎng),進(jìn)一步計(jì)算得出答案.
(1)如圖所示,直線OD即為所求;
(2)如圖,∵OD為△ABE的中位線,
∴AE=2OD=4,
∵AB是⊙O的直徑,
∴∠ACB=90°,
∵CE=CA,
∴△ACE是等腰直角三角形,
∴AC=AE=2,
由勾股定理可得BC=2,
則△ABC的面積為ACBC=×2×2=10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】墊球是排球隊(duì)常規(guī)訓(xùn)練的重要項(xiàng)目之一.下列圖表中的數(shù)據(jù)是甲、乙、丙三人每人十次墊球測(cè)試的成績(jī).測(cè)試規(guī)則為每次連續(xù)接球10個(gè),每墊球到位1個(gè)記1分.
運(yùn)動(dòng)員丙測(cè)試成績(jī)統(tǒng)計(jì)表
測(cè)試序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
成績(jī)(分) | 7 | 6 | 8 | b | 7 | 5 | 8 | a | 8 | 7 |
(1)若運(yùn)動(dòng)員丙測(cè)試成績(jī)的平均數(shù)和眾數(shù)都是7,則成績(jī)表中的a= ,b= ;
(2)若在他們?nèi)酥羞x擇一位墊球成績(jī)優(yōu)秀且較為穩(wěn)定的接球能手作為自由人,你認(rèn)為選誰更合適?請(qǐng)用你所學(xué)過的統(tǒng)計(jì)量加以分析說明(參考數(shù)據(jù):三人成績(jī)的方差分別為S甲2=0.81、S乙2=0.4、S丙2=0.8)
(3)甲、乙、丙三人相互之間進(jìn)行墊球練習(xí),每個(gè)人的球都等可能的傳給其他兩人,球最先從乙手中傳出,第二輪結(jié)束時(shí)球又回到乙手中的概率是多少?(用樹狀圖或列表法解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O 為坐標(biāo)原點(diǎn),P是反比例函數(shù)圖象上任意一點(diǎn),以P為圓心,PO為半徑的圓與x軸交于點(diǎn) A、與y軸交于點(diǎn)B,連接AB.
(1)求證:P為線段AB的中點(diǎn);
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8cm,BC=6cm,點(diǎn)P從點(diǎn)A出發(fā),以lcm/s的速度沿A→D→C方向勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)A出發(fā),以2cm/s的速度沿A→B→C方向勻速運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)到達(dá)點(diǎn)C時(shí),另一個(gè)點(diǎn)也隨之停止.設(shè)運(yùn)動(dòng)時(shí)間為t(s),△APQ的面積為S(cm2),下列能大致反映S與t之間函數(shù)關(guān)系的圖象是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知銳角∠AOB如圖,(1)在射線OA上取一點(diǎn)C,以點(diǎn)O為圓心,OC長(zhǎng)為半徑作,交射線OB于點(diǎn)D,連接CD;
(2)分別以點(diǎn)C,D為圓心,CD長(zhǎng)為半徑作弧,交于點(diǎn)M,N;
(3)連接OM,MN.
根據(jù)以上作圖過程及所作圖形,下列結(jié)論中錯(cuò)誤的是( )
A. ∠COM=∠CODB. 若OM=MN,則∠AOB=20°
C. MN∥CDD. MN=3CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,我們將圓心坐標(biāo)和半徑均為整數(shù)的圓稱為“整圓”.如圖所示,直線l:y=kx+4與x軸、y軸分別交于A、B,∠OAB=30°,點(diǎn)P在x軸上,⊙P與l相切,當(dāng)P在線段OA上運(yùn)動(dòng)時(shí),使得⊙P成為“整圓”的點(diǎn)P個(gè)數(shù)是_____個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠ACB=90°,AC=,BC=16.點(diǎn)O在邊BC上,以O為圓心,OB為半徑的弧經(jīng)過點(diǎn)A.P是弧AB上的一個(gè)動(dòng)點(diǎn).
(1)求半徑OB的長(zhǎng);
(2)如果點(diǎn)P是弧AB的中點(diǎn),聯(lián)結(jié)PC,求∠PCB的正切值;
(3)如果BA平分∠PBC,延長(zhǎng)BP、CA交于點(diǎn)D,求線段DP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y關(guān)于x的二次函數(shù)y=x-bx+b+b-5的圖象與x軸有兩個(gè)公共點(diǎn).
(1)求b的取值范圍;
(2)若b取滿足條件的最大整數(shù)值,當(dāng)m≤x≤時(shí),函數(shù)y的取值范圍是n≤y≤6-2m,求m,n的值;
(3)若在自變量x的值滿足b≤x≤b+3的情況下,對(duì)應(yīng)函數(shù)y的最小值為,求此時(shí)二次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BM是以AB為直徑的⊙O的切線,B為切點(diǎn),BC平分∠ABM,弦CD交AB于點(diǎn)E,DE=OE.
(1)求證:△ACB是等腰直角三角形;
(2)求證:OA2=OEDC:
(3)求tan∠ACD的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com