【題目】如圖, 在東西方向的海岸線MN上有A,B兩港口,海上有一座小島P,漁民每天都乘輪船從A,B 兩港口沿AP,BP的路線去小島捕魚作業(yè).已知小島PA港的北偏東60°方向,在B港的北偏西45°方向,小島P距海岸線MN的距離為30海里.

(1)AP,BP的長(zhǎng)(參考數(shù)據(jù):≈1.4,≈1.7,≈2.2);

(2)甲、乙兩船分別從A,B兩港口同時(shí)出發(fā)去小島P捕魚作業(yè),甲船比乙船晚到小島24分鐘.已知甲船速度是乙船速度的1.2倍,利用(1)中的結(jié)果求甲、乙兩船的速度各是多少海里/時(shí)?

【答案】(1)AP=60海里,BP=42(海里);(2)甲船的速度是24海里/時(shí),乙船的速度是20海里/時(shí)

【解析】

1)過點(diǎn)PPEAB于點(diǎn)E,則有PE=30海里,由題意,可知∠PAB=30°,PBA=45°,從而可得 AP=60海里,在RtPEB中,利用勾股定理即可求得BP的長(zhǎng);

(2)設(shè)乙船的速度是x海里/時(shí),則甲船的速度是1.2x海里/時(shí),根據(jù)甲船比乙船晚到小島24分鐘列出分式方程,求解后進(jìn)行檢驗(yàn)即可得.

(1)如圖,過點(diǎn)PPEMN,垂足為E,

由題意,得∠PAB=90°-60°=30°,PBA=90°-45°=45°,

PE=30海里,∴AP=60海里,

PEMN,PBA=45°,∴∠PBE=BPE= 45°,

PE=EB=30海里,

RtPEB中,BP==30≈42海里,

AP=60海里,BP=42(海里);

(2)設(shè)乙船的速度是x海里/時(shí),則甲船的速度是1.2x海里/時(shí),

根據(jù)題意,得,

解得x=20,

經(jīng)檢驗(yàn),x=20是原方程的解,

甲船的速度為1.2x=1.2×20=24(海里/時(shí)).,

答:甲船的速度是24海里/時(shí),乙船的速度是20海里/時(shí).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形紙片ABCD中,對(duì)角線AC、BD交于點(diǎn)O,折疊正方形紙片ABCD,使AD落在BD上,點(diǎn)A恰好與BD上的點(diǎn)F重合,展開后折痕DE分別交AB、AC于點(diǎn)E、G,連結(jié)GF,給出下列結(jié)論:①∠ADG=22.5°;②tan∠AED=2;③SAGD=SOGD;④四邊形AEFG是菱形;⑤BE=2OG;⑥若SOGF=1,則正方形ABCD的面積是6+4 ,其中正確的結(jié)論個(gè)數(shù)為( 。
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表為某個(gè)雨季水庫管理員記錄的水庫一周內(nèi)的水位變化情況,警戒水位為150m(上周末的水位剛好達(dá)到警戒水位).

星期

增減/m

+1.2

+0.4

+0.8

﹣0.1

+0.7

﹣0.7

﹣1.1

注:正數(shù)表示比前一天水位上升,負(fù)數(shù)表示比前一天水位下降.

(1)本周哪一天水位最高?有多少米?

(2)本周哪一天水位最低?有多少米?

(3)根據(jù)給出的數(shù)據(jù),以警戒水位為0點(diǎn),用折線統(tǒng)計(jì)圖表示本周內(nèi)該水庫的水位情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程

(1)3x-2=1-2(x+1)

(2)

(3)2x+3(2x﹣1)=16-(x+1)

(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了做好大課間活動(dòng),計(jì)劃用400元購(gòu)買10件體育用品,備選體育用品及單價(jià)如下表(單位:元)

備選體育用品

籃球

排球

羽毛球拍

單價(jià)(元)

50

40

25

(1)400元全部用來購(gòu)買籃球和羽毛球拍共10件,問籃球和羽毛球拍各購(gòu)買多少件?

(2)400元全部用來購(gòu)買籃球、排球和羽毛球拍三種共10件,能實(shí)現(xiàn)嗎?(若能實(shí)現(xiàn)直接寫出一種答案即可,若不能請(qǐng)說明理由.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】操作探究:已知在紙面上有一數(shù)軸(如圖所示).

操作一

(1)折疊紙面,使1表示的點(diǎn)與-1表示的點(diǎn)重合,則-3表示的點(diǎn)與________表示的點(diǎn)重合;

操作二:

(2)折疊紙面,使-1表示的點(diǎn)與3表示的點(diǎn)重合,回答以下問題:

5表示的點(diǎn)與數(shù)________表示的點(diǎn)重合;

②若數(shù)軸上A、B兩點(diǎn)之間距離為11(AB的左側(cè)),且A、B兩點(diǎn)經(jīng)折疊后重合,求A、B兩點(diǎn)表示的數(shù)是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖△ABC ,∠BAC=90°,AB=AC,點(diǎn)DBC上一動(dòng)點(diǎn),連接AD,過點(diǎn)AAEAD,并且始終保持AE=AD,連接CE.

(1)求證△ABD △ACE ;

(2)若AF平分∠DAEBCF,探究線段BD,DF,F(xiàn)C之間的數(shù)量關(guān)系并證明;

(3)在(2)的條件下,BD=3,CF=4,AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2﹣2ax+c(a<0)的最大值為4,且拋物線過點(diǎn)( ,﹣ ),點(diǎn)P(t,0)是x軸上的動(dòng)點(diǎn),拋物線與y軸交點(diǎn)為C,頂點(diǎn)為D.
(1)求該二次函數(shù)的解析式,及頂點(diǎn)D的坐標(biāo);
(2)求|PC﹣PD|的最大值及對(duì)應(yīng)的點(diǎn)P的坐標(biāo);
(3)設(shè)Q(0,2t)是y軸上的動(dòng)點(diǎn),若線段PQ與函數(shù)y=a|x|2﹣2a|x|+c的圖象只有一個(gè)公共點(diǎn),求t的取值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校計(jì)劃購(gòu)買一批課外讀物,為了了解學(xué)生對(duì)課外讀物的需求情況,學(xué)校進(jìn)行了一次“我最喜愛的課外讀物”的調(diào)查,設(shè)置了“文學(xué)”、“科普”、“藝術(shù)”和“其他”四個(gè)類別,規(guī)定每人必須并且只能選擇其中一類,現(xiàn)從全體學(xué)生的調(diào)查表中隨機(jī)抽取了部分學(xué)生的調(diào)查表進(jìn)行統(tǒng)計(jì),并把統(tǒng)計(jì)結(jié)果繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖,則在扇形統(tǒng)計(jì)圖中,藝術(shù)類讀物所在扇形的圓心角是度.

查看答案和解析>>

同步練習(xí)冊(cè)答案