12.某校學(xué)生列隊(duì)以4千米/小時(shí)的速度前進(jìn),在隊(duì)尾校長(zhǎng)讓一名學(xué)生跑步到隊(duì)伍的最前面找?guī)ш?duì)老師傳達(dá)一個(gè)通知,然后立即返回隊(duì)尾,這位學(xué)生的速度是8千米/小時(shí),從隊(duì)尾趕到排頭又回到隊(duì)尾共用了6分鐘,求隊(duì)伍的長(zhǎng)有多少米?

分析 設(shè)隊(duì)伍的長(zhǎng)有x千米,學(xué)生跑步到隊(duì)伍的最前面為追擊問題,這名同學(xué)從排頭又回到隊(duì)尾為相遇問題,根據(jù)時(shí)間列方程得到$\frac{x}{8-4}$+$\frac{x}{8+4}$=$\frac{6}{60}$,然后解方程即可.

解答 解:設(shè)隊(duì)伍的長(zhǎng)有x千米,
根據(jù)題意得$\frac{x}{8-4}$+$\frac{x}{8+4}$=$\frac{6}{60}$,
解得x=0.3,
0.3千米=300米.
答:隊(duì)伍的長(zhǎng)有300米.

點(diǎn)評(píng) 本題考查了一元一次方程的應(yīng)用:首先審題找出題中的未知量和所有的已知量,直接設(shè)要求的未知量或間接設(shè)一關(guān)鍵的未知量為x,然后用含x的式子表示相關(guān)的量,找出之間的相等關(guān)系列方程、求解、作答,即設(shè)、列、解、答.利用追擊和相遇問題解決,注意單位統(tǒng)一.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.先化簡(jiǎn),再求值:($\frac{1}{{x}^{2}+2x}$+$\frac{1}{x}$)÷$\frac{x+3}{{x}^{2}-4}$,其中x=4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

3.已知$\sqrt{3}$≈1.732,$\sqrt{30}$≈5.477,則$\sqrt{2.7}$≈1.643(結(jié)果精確到0.001).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

20.若三角形的三邊a,b,c滿足a:b:c=1:1:$\sqrt{2}$,則該三角形的三個(gè)內(nèi)角的度分別為45°,45°,90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.計(jì)算:($\sqrt{2}$+π)0-2|sin30°-1|+($\frac{1}{2016}$)-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

17.下列方程組中是二元一次萬程組的是( 。
A.$\left\{\begin{array}{l}{xy=1}\\{x+y=2}\end{array}\right.$B.$\left\{\begin{array}{l}{5x-2y=1}\\{\frac{1}{x}+y=3}\end{array}\right.$C.$\left\{\begin{array}{l}{2x+z=0}\\{3x-y=\frac{1}{5}}\end{array}\right.$D.$\left\{\begin{array}{l}{x+\frac{y}{2}=5}\\{\frac{x}{2}+\frac{y}{3}=7}\end{array}\right.$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.在平面直角坐標(biāo)系xOy中,對(duì)于任意三點(diǎn)A,B,C,定義“外延矩形”:若矩形的任何一條邊均與某條坐標(biāo)軸垂直,且點(diǎn)A,B,C在該矩形的內(nèi)部或邊界上.則該矩形稱為A,B,C的“外延矩形”.
我們把點(diǎn)A,B,C的所有的“外延矩形”中,面積最小的稱為點(diǎn)A,B,C的“最佳外延矩形”.
(Ⅰ)已知點(diǎn)A(-2,0),B(4,3),C(0,t).
①若t=2,則點(diǎn)A,B,C的“最佳外延矩形”的面積為18;
②若點(diǎn)A,B,C的“最佳外延矩形”的面積為24,請(qǐng)直接寫出t的值.
(Ⅱ)已知M(0,8),N(6,0),點(diǎn)P(x,y)是拋物線y=x2-4x+3上一點(diǎn),求點(diǎn)M,N,P的“最佳外延矩形”面積的最小值,以及此時(shí)點(diǎn)P的橫坐標(biāo)x的取值范圍.
(Ⅲ)已知D(1,1),點(diǎn)E(m,n)是函數(shù)$y=\frac{4}{x}$的圖象上一點(diǎn),求點(diǎn)O,D,E的“最佳外延矩形”面積的最小值,以及此時(shí)點(diǎn)E的橫坐標(biāo)m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.如圖,某油田有四個(gè)油井分別位于A,B,C,D四個(gè)點(diǎn)上,如果要建一個(gè)維修站H,使這個(gè)維修站到這四個(gè)油井的距離之和最短,那么這個(gè)維修站就必須建于AC,BD的交點(diǎn)上,知道這是為什么嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

2.估算$\sqrt{26}$=5.0或5.1(誤差小于0.1).

查看答案和解析>>

同步練習(xí)冊(cè)答案