【題目】如圖,正方形網(wǎng)格中,每個小正方形的邊長都是一個單位長度,在平面直角坐標(biāo)系內(nèi),△ABC的三個頂點坐標(biāo)分別為A(1,4),B(1,1),C(3,1).
(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1;
(2)畫出△ABC繞O點順時針旋轉(zhuǎn)90°后的△A2B2C2;
(3)在(2)的條件下,求點C劃過的路徑長度(結(jié)果保留π).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線交X軸于A、B兩點,交Y軸于點C ,.
(1)求拋物線的解析式;
(2)平面內(nèi)是否存在一點P,使以A,B,C,P為頂點的四邊形為平行四邊形,若存在直接寫出P的坐標(biāo),若不存在請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形EFGH的四個頂點分別在矩形ABCD的各條邊上,AB=EF,FG=2,GC=3.有以下四個結(jié)論:①∠BGF=∠CHG;②△BFG≌△DHE;③tan∠BFG=;④矩形EFGH的面積是4.其中一定成立的是______.(把所有正確結(jié)論的序號填在橫線上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們把三角形中最大內(nèi)角與最小內(nèi)角的度數(shù)差稱為該三角形的“內(nèi)角正度值”.如果等腰三角形的腰長為2,“內(nèi)角正度值”為,那么該三角形的面積等于___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】合肥地鐵一號線與地鐵二號線在A站交匯,且兩條地鐵線互相垂直如圖所示,學(xué)校P到地鐵一號線B站的距離PB=2km,到地鐵二號線C站的距離PC為4km,PB與一號線的夾角為30°,PC與二號線的夾角為60°.求學(xué)校P到A站的距離(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,AC、DC為弦,∠ACD=60°,P為AB延長線上的點,∠APD=30°.
(1)求證:DP是⊙O的切線;
(2)若⊙O的半徑為3cm,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A1的坐標(biāo)為(1,2),以點O為圓心,以OA1長為半徑畫弧,交直線y=x于點B1.過B1點作B1A2∥y軸,交直線y=2x于點A2,以O為圓心,以OA2長為半徑畫弧,交直線y=x于點B2;過點B2作B2A3∥y軸,交直線y=2x于點A3,以點O為圓心,以OA3長為半徑畫弧,交直線y=x于點B3;過B3點作B3A4∥y軸,交直線y=2x于點A4,以點O為圓心,以OA4長為半徑畫弧,交直線y=x于點B4,…按照如此規(guī)律進行下去,點B2019的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:如圖,在直角坐標(biāo)系中,有菱形OABC,A點的坐標(biāo)為(10,0),對角線OB、AC相交于D點,雙曲線y=(x>0)經(jīng)過D點,交BC的延長線于E點,且OBAC=160,有下列四個結(jié)論:
①雙曲線的解析式為y=(x>0);
②E點的坐標(biāo)是(5,8);
③sin∠COA=;
④AC+OB=12.
其中正確的結(jié)論有 (填上序號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com