【題目】如圖,在矩形ABCD 中,AB=4,AD=a,點(diǎn)P在AD上,且AP=2,點(diǎn)E是邊AB上的動(dòng)點(diǎn),以PE為邊作直角∠EPF,射線PF交BC于點(diǎn)F,連接EF,給出下列結(jié)論:①tan∠PFE=;②a的最小值為10.則下列說法正確的是( )
A.①②都對(duì)B.①②都錯(cuò)C.①對(duì)②錯(cuò)D.①錯(cuò)②對(duì)
【答案】C
【解析】
①,利用矩形ABCD四個(gè)直角,再加上∠EPF為直角,聯(lián)想到構(gòu)造三垂直模型,故過F作AD垂線,垂足為G,即有△AEP∽△GPF,且相似比為1:2,即求得tan∠PFE.
②顯然,若a要取最小值,則F、C要重合(G、D重合),又AE與PG為對(duì)應(yīng)邊,AE越小則PG(PD)越小,當(dāng)AE=0時(shí),PD=0最小,此時(shí)a=2.
解:過點(diǎn)F作FG⊥AD于點(diǎn)G
∴∠FGP=90°
∵矩形ABCD中,AB=4,∠A=∠B=90°
∴四邊形ABFG是矩形,∠AEP+∠APE=90°
∴FG=AB=4
∵∠EPF=90°
∴∠APE+∠FPG=90°
∴∠AEP=∠FPG
∴△AEP∽△GPF
∴,故①正確;
如圖2,當(dāng)A、E重合,C、F重合,D、P重合時(shí),AD最短,此時(shí)a=2,故②錯(cuò)誤.
故選擇:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小飛研究二次函數(shù)y=-(x-m)2-m+1(m為常數(shù))性質(zhì)時(shí)如下結(jié)論:①這個(gè)函數(shù)圖象的頂點(diǎn)始終在直線y=-x+1上;②存在一個(gè)m的值,使得函數(shù)圖象的頂點(diǎn)與軸的兩個(gè)交點(diǎn)構(gòu)成等腰直角三角形;③點(diǎn)A(x1,y1)與點(diǎn)B(x2,y2)在函數(shù)圖象上,若x1<x2,x1+x2>2m,則y1<y2;④當(dāng)-1<x<2時(shí),y隨x的增大而增大,則m的取值范圍為m≥2其中錯(cuò)誤結(jié)論的序號(hào)是( )
A. ①B. ②C. ③D. ④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)C在⊙O上,AC=AB,動(dòng)點(diǎn)P與點(diǎn)C位于直徑AB的異側(cè),點(diǎn)P在半圓弧AB上運(yùn)動(dòng)(不與A.B兩點(diǎn)重合),連結(jié)BP,過點(diǎn)C作直線PB的垂線CD交直線PB于D點(diǎn),連結(jié)CP.
(1)如圖1,在點(diǎn)P運(yùn)動(dòng)過程中,求∠CPD的度數(shù);
(2)如圖2,在點(diǎn)P運(yùn)動(dòng)過程中,當(dāng)CP⊥AB時(shí),AC=2時(shí),求△BPC的周長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)G,點(diǎn)F是CD上一點(diǎn),且滿足=,連接AF并延長(zhǎng)交⊙O于點(diǎn)E。 連接AD、DE,若CF=2,AF=3。給出下列結(jié)論:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4 其中正確的是( )
A.①②④B.①②③C.②③④D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=(x﹣3)2+m的圖象與y軸交于點(diǎn)C,點(diǎn)B是點(diǎn)C關(guān)于該二次函數(shù)圖象的對(duì)稱軸對(duì)稱的點(diǎn),已知一次函數(shù)y=kx+b的圖象經(jīng)過該二次函數(shù)圖象上的點(diǎn)A(1,0)及點(diǎn)B.
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)拋物線上是否存在一點(diǎn)P,使S△ABP=S△ABC?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AC為直徑的⊙O交AB于點(diǎn)D,交BC于點(diǎn)E.
(1)求證:BE=CE;
(2)若BD=2,BE=3,求tan∠BAC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=(x>0)的圖象經(jīng)過矩形OABC對(duì)角線的交點(diǎn)M,分別與AB、BC相交于點(diǎn)D、E.若四邊形ODBE的面積為9,則k的值為( )
A. 3B. 6C. 9D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的材料:
解方程x4﹣7x2+12=0這是一個(gè)一元四次方程,根據(jù)該方程的特點(diǎn),它的解法通常是:設(shè)x2=y,則x4=y2,∴原方程可化為:y2﹣7y+12=0,解得y1=3,y2=4,當(dāng)y=3時(shí),x2=3,x=±,當(dāng)y=4時(shí),x2=4,x=±2.∴原方程有四個(gè)根是:x1=,x2=﹣,x3=2,x4=﹣2,以上方法叫換元法,達(dá)到了降次的目的,體現(xiàn)了數(shù)學(xué)的轉(zhuǎn)化思想,運(yùn)用上述方法解答下列問題.
(1)解方程:(x2+x)2﹣5(x2+x)+4=0;
(2)已知實(shí)數(shù)a,b滿足(a2+b2)2﹣3(a2+b2)﹣10=0,試求a2+b2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,E為AD的中點(diǎn),已知△DEF的面積為S,則四邊形ABCE的面積為( )
A. 8S B. 9S C. 10S D. 11S
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com