【題目】小明學(xué)習(xí)了《有理數(shù)》后,對(duì)運(yùn)算非常感興趣,于是定義了一種新運(yùn)算“△”規(guī)則如下:對(duì)于兩個(gè)有理數(shù)m , n , m △ n =.
(1)計(jì)算:1△(-2)= ;
(2)判斷這種新運(yùn)算是否具有交換律,并說(shuō)明理由;
(3)若a =| x-1| , a =| x-2|,求a△ a (用含 x 的式子表示)
【答案】(1)1;(2)滿(mǎn)足;(3)當(dāng)x≥1.5時(shí),a△ a = x-1;當(dāng)x<1.5時(shí),a△ a = 2-x.
【解析】
(1)利用規(guī)定的運(yùn)算方法代入求得數(shù)值即可;
(2)把(1)中的數(shù)字位置調(diào)換,計(jì)算后進(jìn)一步比較得出結(jié)論即可;
(3)分情況討論求出a△ a 即可.
解:(1)1△(-2)==1;
(2)具有交換律,理由如下:
把(1)中的數(shù)字位置調(diào)換有
(-2)△1==1=1△(-2)
∴滿(mǎn)足交換律;
(3)
a =| x-1| , a =| x-2|
∴a△ a =
當(dāng)x≥2時(shí),a△ a ===x-1;
當(dāng)1≤x<2時(shí),a△ a ==
當(dāng)1≤x<1.5時(shí),a△ a =
當(dāng)1.5≤x<2時(shí),a△ a =
當(dāng)x<1時(shí),a△ a ===2-x
故答案為:(1)1;(2)滿(mǎn)足;(3)當(dāng)x≥1.5時(shí),a△ a = x-1;當(dāng)x<1.5時(shí),a△ a = 2-x.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用火柴棍象如圖這樣搭三角形:你能找出規(guī)律猜想出下列兩個(gè)問(wèn)題嗎?
(1)搭7個(gè)需要______根火柴棍;
(2)搭 n 個(gè)三角形需要____________根火柴棍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形是正方形,直線分別過(guò)三點(diǎn),且,若與的距離為6,正方形的邊長(zhǎng)為10,則與的距離為_________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】規(guī)定:求若干個(gè)相同的有理數(shù)(均不等于 )的除法運(yùn)算叫做除方,如 , 等,類(lèi)比有理數(shù)乘方,我們把 記作 ,讀作“ 的圈 次方,” 記作 ,讀作:“ 的圈 次方”.一般地,把 記作a , 讀作“ 的圈 次方”
(1)(初步探究)
Ⅰ.直接寫(xiě)出計(jì)算結(jié)果: =________, ________.
Ⅱ.關(guān)于除方,下列說(shuō)法錯(cuò)誤的是(________)
A.任何非零數(shù)的圈 次方都等于它的倒數(shù)
B.兩個(gè)數(shù)互為倒數(shù),那么它的n次方和圈n次方也互為倒數(shù)
C.對(duì)于任何正整數(shù) ,(-1)=1
D.負(fù)數(shù)的圈奇數(shù)次方結(jié)果是負(fù)數(shù),負(fù)數(shù)的圈偶數(shù)次方結(jié)果是正數(shù).
(2)(深入思考)
我們知道,有理數(shù)的減法運(yùn)算可以轉(zhuǎn)化為加法運(yùn)算,除法運(yùn)算可以轉(zhuǎn)化為乘法運(yùn)算,有理數(shù)的除方運(yùn)算如何轉(zhuǎn)化為乘方運(yùn)算呢?
Ⅰ.試一試,仿照上面的算式,將下列運(yùn)算結(jié)果直接寫(xiě)成冪的形式.- ________; ________.
Ⅱ.想一想:將一個(gè)非零有理數(shù) 的圈 /span> 次方寫(xiě)成冪的形式等于________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是學(xué)習(xí)分式方程應(yīng)用時(shí),老師板書(shū)的問(wèn)題和兩名同學(xué)對(duì)該題的解答.(老師找聰聰和明明分別用不同的方法解答此題)
(1)聰聰同學(xué)所列方程中的表示_______________________________________.
(2)明明一時(shí)緊張沒(méi)能做出來(lái),請(qǐng)你幫明明完整的解答出來(lái).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)C為線段AB的中點(diǎn),四邊形BCDE是以BC為一邊的正方形.以B為圓心,BD長(zhǎng)為半徑的⊙B與AB相交于F點(diǎn),延長(zhǎng)EB交⊙B于G點(diǎn),連接DG交于AB于Q點(diǎn),連接AD.
求證:(1)AD是⊙B的切線;(2)AD=AQ;(3)BC2=CFEG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)平面內(nèi),直線y=x+2分別與x軸、y軸交于點(diǎn)A、C.拋物線y=﹣+bx+c經(jīng)過(guò)點(diǎn)A與點(diǎn)C,且與x軸的另一個(gè)交點(diǎn)為點(diǎn)B.點(diǎn)D在該拋物線上,且位于直線AC的上方.
(1)求上述拋物線的表達(dá)式;
(2)聯(lián)結(jié)BC、BD,且BD交AC于點(diǎn)E,如果△ABE的面積與△ABC的面積之比為4:5,求∠DBA的余切值;
(3)過(guò)點(diǎn)D作DF⊥AC,垂足為點(diǎn)F,聯(lián)結(jié)CD.若△CFD與△AOC相似,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】移動(dòng)互聯(lián)網(wǎng)是現(xiàn)代通信平臺(tái),可以實(shí)現(xiàn)手機(jī)之間的私密互聯(lián),任意兩臺(tái)手機(jī)私密互聯(lián)構(gòu)成一條連接通路.
(1)若臺(tái)手機(jī)、、同時(shí)私密互聯(lián),請(qǐng)畫(huà)出圖形,并用線段表示構(gòu)成的所有連接通路:
(2)若臺(tái)手機(jī)、、、同時(shí)私密互聯(lián),形成幾條連接通路?
(3)若臺(tái)手機(jī)同時(shí)私密互聯(lián),形成幾條連接通路?請(qǐng)用含的式子表示.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】同學(xué)們知道,|8﹣3|表示8與3的差的絕對(duì)值,也可理解為數(shù)軸上表示數(shù)8與3兩點(diǎn)間的距離.試探索:
(1)填空:|8+3|表示數(shù)軸上數(shù)8與數(shù) 兩點(diǎn)間的距離;
(2)|x+5|+|x﹣2|表示數(shù)軸上數(shù)x與數(shù) 的距離和數(shù)x與數(shù) 的距離的和.
(3)滿(mǎn)足|x+5|+|x﹣2|=7的所有整數(shù)x的值是 .
(4)由以上探索猜想對(duì)于任何有理數(shù)x,|x﹣3|+|x﹣6|是否有最小值?如果有寫(xiě)出最小值;如果沒(méi)有,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com