【題目】如圖,已知,,可推得.理由如下:

(已知),

(________)

(等量代換)

(________)

________(________)

(已知)

(等量代換)

(________)

【答案】詳見解析

【解析】

首先確定∠1=CGD是對頂角,利用等量代換,求得∠2=CGD,則可根據(jù):同位角相等,兩直線平行,證得:CE//BF,又由兩直線平行,同位角相等,證得角相等,易得:∠BFD=B,則利用內(nèi)錯角相等,兩直線平行,即可證得:AB//CD.

解:(已知),

對頂角相等),

(等量代換),

(同位角相等,兩直線平行),

(兩直線平行,同位角相等),

(已知),

(等量代換),

(內(nèi)錯角相等,兩直線平行).

故答案為:(對頂角相等),(同位角相等,兩直線平行),,(兩直線平行,同位角相等),(內(nèi)錯角相等,兩直線平行).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】【發(fā)現(xiàn)證明】

如圖1,點E,F分別在正方形ABCD的邊BCCD上,∠EAF=45°,試判斷BE,EFFD之間的數(shù)量關系.

小聰把ABE繞點A逆時針旋轉(zhuǎn)90°ADG,通過證明AEF≌△AGF;從而發(fā)現(xiàn)并證明了EF=BE+FD

【類比引申】

1)如圖2,點E、F分別在正方形ABCD的邊CB、CD的延長線上,∠EAF=45°,連接EF,請根據(jù)小聰?shù)陌l(fā)現(xiàn)給你的啟示寫出EF、BE、DF之間的數(shù)量關系,并證明;

【聯(lián)想拓展】

2)如圖3,如圖,∠BAC=90°,AB=AC,點EF在邊BC上,且∠EAF=45°,若BE=3,EF=5,求CF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1所示,將一副三角尺的直角頂點重合在點O處.

①∠AOC與∠BOD相等嗎?說明理由;

②∠AOD與∠BOC數(shù)量上有什么關系嗎?說明理由.

2)若將這副三角尺按圖2所示擺放,直角頂點重合在點O處,不添加字母,分析圖中現(xiàn)有標注字母所表示的角;

①找出圖中相等關系的角;

②找出圖中互補關系的角,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一副三角板拼合在一起,邊重合,,,.當點從點出發(fā)沿向下滑動時,點同時從點出發(fā)沿射線向右滑動.當點從點滑動到點時,連接,則的面積最大值為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】感恩節(jié)即將來臨,小王調(diào)查了初三年級部分同學在感恩節(jié)當天將以何種方式對幫助過自己的人表達感謝,他將調(diào)查結果分為如下四類:A類﹣﹣當面表示感謝、B類﹣﹣打電話表示感謝、C類﹣﹣發(fā)短信表示感謝、D類﹣﹣寫書信表示感謝.他將調(diào)查結果繪制成了如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖.請你根據(jù)圖中提供的信息完成下列各題:

(1)補全條形統(tǒng)計圖;

(2)在A類的同學中,有4人來自同一班級,其中有2人主持過班會.現(xiàn)準備從他們4人中隨機抽出兩位同學主持感恩節(jié)主題班會課,請用樹狀圖或列表法求抽出1人主持過班會而另一人沒主持過班會的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù)y1=x+b的圖象l與二次函數(shù)y2=x2+mx+b的圖象C′都經(jīng)過點B0,1)和點C,且圖象C′過點A20).

1)求二次函數(shù)的最大值;

2)設使y2y1成立的x取值的所有整數(shù)和為s,若s是關于x的方程=0的根,求a的值;

3)若點F、G在圖象C′上,長度為的線段DE在線段BC上移動,EFDG始終平行于y軸,當四邊形DEFG的面積最大時,在x軸上求點P,使PD+PE最小,求出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算

(1)

(2)(2a3b4ab3(-ab)-(2a2)2(-b2

(3)先化簡,再求代數(shù)式(a2b)(a2b)(a2b)24ab 的值,其中 a1,b

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知,,其中,滿足,點為第三象限內(nèi)一點.

1)若到坐標軸的距離相等,,且,求點坐標

2)若,請用含的式子表示的面積.

3)在(2)條件下,當時,在軸上有點,使得的面積是的面積的2倍,請求出點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】統(tǒng)計七年級部分同學的跳高測試成績,得到如下頻率直方圖(每組含前一個邊界值,不含后一個邊界值).

1)參加測試的總?cè)藬?shù)是多少人?

2)組距為多少?

3)跳高成績在(含)以上的有多少人?占總?cè)藬?shù)的百分之幾?

查看答案和解析>>

同步練習冊答案