【題目】某中學(xué)對全校學(xué)生進(jìn)行文明禮儀知識測試,為了解測試結(jié)果,隨機抽取部分學(xué)生的成績進(jìn)行分析,將成績分為三個等級:不合格、一般、優(yōu)秀,并繪制成如圖兩幅統(tǒng)計圖(不完整).
請你根據(jù)圖中所給的信息解答下列問題:
(1)這次測試,一共抽取了名學(xué)生;
(2)請將以上兩幅統(tǒng)計圖補充完整;(注:扇形圖補百分比,條形圖補“優(yōu)秀”人數(shù)與高度);
(3)若“一般”和“優(yōu)秀”均被視為達(dá)標(biāo)成績,該校學(xué)生有1200人,請你估計此次測試中,全校達(dá)標(biāo)的學(xué)生有多少人.
【答案】(1)120;(2)補充完整統(tǒng)計圖見解析;(3)960.
【解析】分析:(1)用不合格的人數(shù)÷不合格所占的百分比,即可得到總?cè)藬?shù);
(2)成績一般的學(xué)生占的百分比=1-成績優(yōu)秀的百分比-成績不合格的百分比,測試的學(xué)生總數(shù)=不合格的人數(shù)÷不合格人數(shù)的百分比,繼而求出成績優(yōu)秀的人數(shù).
(3)該校學(xué)生文明禮儀知識測試中成績達(dá)標(biāo)的人數(shù)=1200×成績達(dá)標(biāo)的學(xué)生所占的百分比.
詳解:
(1)24÷20%=120(人),
答:這次測試,一共抽取了120名學(xué)生;
(2)成績一般的學(xué)生占的百分比=1-20%-50%=30%,
測試的學(xué)生總數(shù)=24÷20%=120人,
成績優(yōu)秀的人數(shù)=120×50%=60人,
所補充圖形如下所示:
(3)1200×(50%+30%)=960(人).
答:估計全校達(dá)標(biāo)的學(xué)生有960人.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形網(wǎng)格中(網(wǎng)格中的每個小正方形邊長是1),△ABC的頂點均在格點上,請在所給的直角坐標(biāo)系中解答下列問題:
(1)作出△ABC繞點A逆時針旋轉(zhuǎn)90°的△AB1C1,再作出△AB1C1關(guān)于原點O成中心對稱的△A1B2C2.
(2)點B1的坐標(biāo)為 ,點C2的坐標(biāo)為 .
(3)△ABC經(jīng)過怎樣的旋轉(zhuǎn)可得到△A1B2C2, .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年春季,建陽區(qū)某服裝商店分兩次從批發(fā)市場購進(jìn)同一款服裝,數(shù)量之比是2:3,且第一、二次進(jìn)貨價分別為每件50元、40元,總共付了4400元的貨款.
(1)求第一、二次購進(jìn)服裝的數(shù)量分別是多少件?
(2)由于該款服裝剛推出時,很受歡迎,按每件70元銷售了x件;后來,由于該服裝滯銷,為了及時處理庫存,緩解資金壓力,其剩余部分的按每件30元全部售完.當(dāng)x的值至少為多少時,該服裝商店才不會虧本.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰△ABC中,AB=BC,將△ABC繞頂點B逆時針方向旋轉(zhuǎn)度到△A1BC1的位置,AB與A1C1相交于點D,AC與A1C1、BC1分別交于點E、F.
(1)若∠ABC=,∠DBF=,則=______°;
(2)求證:△BCF≌△BA1D;
(3)連接DF,當(dāng)∠DBF=時,判定△DBF的形狀并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P、Q是邊長為2的菱形ABCD中兩邊BC和CD的中點,K是BD上一動點,則KP+KQ的最小值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知∠AOB是直角,OM平分∠AOC,ON平分∠BOC,求∠MON與∠AOB的關(guān)系.
(2)如果(1)中,改變∠AOB的大小,其他條件不變,求∠MON與∠AOB的關(guān)系.
(3)你從(1),(2)的結(jié)果中能發(fā)現(xiàn)什么規(guī)律?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖示,AB∥CD,且點E在射線AB與CD之間,請說明∠AEC=∠A+∠C的理由.
(2)現(xiàn)在如圖b示,仍有AB∥CD,但點E在AB與CD的上方,①請嘗試探索∠1,∠2,∠E三者的數(shù)量關(guān)系. ②請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點A(﹣1,0),對稱軸為直線x=1,與y軸的交點B在(0,2)和(0,3)之間(包括這兩點),下列結(jié)論:
①當(dāng)x>3時,y<0;②3a+b<0;③﹣1≤a≤﹣ ;④4ac﹣b2>8a;
其中正確的結(jié)論是( )
A.①③④
B.①②③
C.①②④
D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AC的垂直平分線分別與AC,BC及AB的延長線相較于點D,E,F(xiàn),且BF=BC,⊙O是△BEF的外接圓,∠EBF的平分線交EF于點G,交⊙O于點H,連接BD,F(xiàn)H.
(1)求證:△ABC≌△EBF;
(2)試判斷BD與⊙O的位置關(guān)系,并說明理由;
(3)若AB=1,求HGHB的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com