【題目】已知拋物線y=ax2經(jīng)過點(diǎn)A2,1).

1 a的值;

2 如圖1,點(diǎn)Mx軸負(fù)半軸上一點(diǎn),線段AM交拋物線于N.若OMN為等腰三角形,求點(diǎn)N的坐標(biāo);

3 如圖2,直線y=kx2k3交拋物線于BC兩點(diǎn),過點(diǎn)CCPx軸,交直線AB于點(diǎn)P,請(qǐng)說明點(diǎn)P一定在某條確定的直線上運(yùn)動(dòng),求出這條直線的解析式.

【答案】1;(2N(﹣1,);(3y=x3

【解析】

1A2,1)代入拋物線方程,解方程即可得到a的值;

2)設(shè)點(diǎn)Mm,0),求出AM所在直線的表達(dá)式,MN=ON時(shí),過點(diǎn)NNHOM,求出OH,HN的長(zhǎng),得出N的坐標(biāo),把N點(diǎn)坐標(biāo)代入拋物線表達(dá)式求解即可得出結(jié)論;

3)設(shè):點(diǎn)Cx1,y1),Bx2y2),Px1,y),則:x2=kx2k+3,由根與系數(shù)的關(guān)系得:x1+x2=4k,x1x2=8k12,…①,y2②,把A、B坐標(biāo)代入直線方程,解得AB所在的直線方程,把點(diǎn)Px1y)、①、②代入方程,整理即可得到結(jié)論.

1A2,1)代入拋物線方程,解得:a;

2)設(shè)點(diǎn)Mm,0),把點(diǎn)A、M坐標(biāo)代入直線表達(dá)式得:

AM所在直線的表達(dá)式為:yx

從圖象位置關(guān)系看,△OMN為等腰三角形時(shí),只有MN=ON這一種情況,過點(diǎn)NNHOM,則OH=MH,HN=MHtanAMH,則N,),把N點(diǎn)坐標(biāo)代入拋物線表達(dá)式解得:m=2,m=4(舍去);則N-1,).

經(jīng)驗(yàn)證:MN=OMOM=ON無解.故:N(﹣1);

3)設(shè):點(diǎn)Cx1,y1),Bx2,y2),Px1,y),則:x2=kx2k+3,則:x1+x2=4k,x1x2=8k12,…①,y2②,把A、B坐標(biāo)代入直線方程,解得:

AB所在的直線方程為:y,把點(diǎn)Px1,y)、①、②代入上式,整理得:y=x13,這條直線的解析式為:y=x3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的布袋中,有個(gè)紅球,個(gè)白球,這些球除顏色外都相同.

1)攪勻后從中任意摸出個(gè)球,摸到紅球的概率是________;

2)攪勻后先從中任意摸出個(gè)球(不放回),再?gòu)挠嘞碌那蛑腥我饷?/span>個(gè)球.求兩次都摸到紅球的概率.(用樹狀圖或表格列出所有等可能出現(xiàn)的結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰△OAB的底邊OB恰好在x軸上,反比例函數(shù)y的圖象經(jīng)過AB的中點(diǎn)M,若等腰△OAB的面積為24,則k=( 。

A. 24B. 18C. 12D. 9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,DAB的中點(diǎn),ECD的中點(diǎn), 過點(diǎn)CCF//ABAE的延長(zhǎng)線于點(diǎn)F,連接BF

(1) 求證:DBCF;

(2) 如果ACBC,試判斷四邊形BDCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,ABACAD是中線,AB10AD7,∠CAD45°,則BC_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)EBC的中點(diǎn),連接DE,過點(diǎn)AAGEDDE于點(diǎn)F,交CD于點(diǎn)G

1)證明:△ADG≌△DCE;(2)連接BF,證明:ABFB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A點(diǎn)的坐標(biāo)為(a,6),ABx軸于點(diǎn)B,cosOAB═,反比例函數(shù)y=的圖象的一支分別交AO、AB于點(diǎn)C、D.延長(zhǎng)AO交反比例函數(shù)的圖象的另一支于點(diǎn)E.已知點(diǎn)D的縱坐標(biāo)為

(1)求反比例函數(shù)的解析式;

(2)求直線EB的解析式;

(3)求SOEB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(6,6),(6,0),拋物線y=﹣(xm2+n的頂點(diǎn)P在折線OAAB上運(yùn)動(dòng).

1)當(dāng)點(diǎn)P在線段OA上運(yùn)動(dòng)時(shí),拋物線y=﹣(xm2+ny軸交點(diǎn)坐標(biāo)為(0,c).

①用含m的代數(shù)式表示n,

②求c的取值范圍.

2)當(dāng)拋物線y=﹣(xm2+n經(jīng)過點(diǎn)B時(shí),求拋物線所對(duì)應(yīng)的函數(shù)表達(dá)式;

3)當(dāng)拋物線與△ABO的邊有三個(gè)公共點(diǎn)時(shí),直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將平行四邊形ABCD繞點(diǎn)D旋轉(zhuǎn),點(diǎn)C落在BC上的點(diǎn)H處,點(diǎn)B恰好落在點(diǎn)A處,得平行四邊形DHAE,若BH=2,CH=3,則DC=_____

查看答案和解析>>

同步練習(xí)冊(cè)答案