分析 (1)首先依據(jù)平行線(xiàn)的性質(zhì)證明∠B=∠DAE,∠C=∠CAE,然后結(jié)合角平分線(xiàn)的定義可證明∠B=∠C,故此可證明△ABC為等腰三角形;
(2)首先證明△AEF≌△CFG,從而得到CG的長(zhǎng),然后可求得BC的長(zhǎng),于是可求得△ABC的周長(zhǎng).
解答 證明:(1)∵AE∥BC,
∴∠B=∠DAE,∠C=∠CAE.
∵AE平分∠DAC,
∴∠DAE=∠CAE.
∴∠B=∠C.
∴△ABC是等腰三角形.
(2)∵F是AC的中點(diǎn),
∴AF=CF.
在△AFE和△CFG中$\left\{\begin{array}{l}{∠C=∠CAE}\\{AF=FC}\\{∠AFE=∠GFC}\end{array}\right.$,
∴△AEF≌△CFG.
∴AE=GC=8.
∵GC=2BG,
∴BG=4.
∴BC=12.
∴△ABC的周長(zhǎng)=AB+AC+BC=10+10+12=32.
點(diǎn)評(píng) 本題主要考查的是等腰三角形的性質(zhì)和判定,熟練掌握等腰三角形的性質(zhì)和判定定理是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com