8.解方程:
(1)3x+7=32-2x
(2)$\frac{x}{6}$-$\frac{30-x}{4}$=5.

分析 (1)方程移項合并,把x系數(shù)化為1,即可求出解;
(2)方程去分母,去括號,移項合并,把x系數(shù)化為1,即可求出解.

解答 解:(1)移項合并得:5x=25,
解得:x=5;
(2)去分母得:2x-90+3x=60,
移項合并得:5x=150,
解得:x=30.

點評 此題考查了解一元一次方程,其步驟為:去分母,去括號,移項合并,把未知數(shù)系數(shù)化為1,求出解.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

18.如圖,在△ABC中,已知點D在線段AB的反向延長線上,過AC的中點F作線段GE交∠DAC的平分線于E,交BC于G,且AE∥BC.
(1)求證:△ABC是等腰三角形.
(2)若AE=8,AB=10,GC=2BG,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

19.(1)解方程:$\frac{1}{x-2}$-3=$\frac{x-1}{2-x}$;
(2)已知4x=3y,求代數(shù)式(x-2y)2-(x-y)(x+y)-2y2的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

16.如圖所示,C,D是線段AB上的兩點,AC=$\frac{5}{9}$BC,AD=$\frac{9}{5}$DB,若CD=2cm,求線段AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

3.化簡:
(1)$\frac{7a}{2\sqrt{a}}$(a>0);
(2)$\sqrt{\frac{3^{2}}{8a}}$(a>0,b>0);
(3)$\frac{-\sqrt{60}}{5\sqrt{45}}$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

13.解下列方程組:
(1)$\left\{\begin{array}{l}{2x+y=3}\\{x-y=0}\end{array}\right.$
(2)$\left\{\begin{array}{l}{x+3y=12}\\{2x-3y=6}\end{array}\right.$
(3)$\left\{\begin{array}{l}{3x-y=4}\\{3x+y=14}\end{array}\right.$
(4)$\left\{\begin{array}{l}{x+y=6}\\{y+2x=2}\end{array}\right.$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

20.在外打工的小王,利用打工賺來的積蓄,準備在家鄉(xiāng)創(chuàng)辦小型零部件加工企業(yè),該零部件按規(guī)格分為5種型號,據(jù)調(diào)研顯示,每種型號的日產(chǎn)量見下表所列(每種型號的產(chǎn)品每天都能銷售完).
產(chǎn)品型號x12345
日產(chǎn)量y(件)10090807060
由于剛創(chuàng)辦,該企業(yè)只能生產(chǎn)一種型號的產(chǎn)品.
(1)求y與x的函數(shù)關系式.
(2)已知銷售單價z元與型號x之間滿足x=10x+60,小王為了擴大日銷售額,應選擇生產(chǎn)那種型號的零件?并求出當日銷售額ρ的最大值.
 (3)若生產(chǎn)每種型號產(chǎn)品的每件成本q元與x滿足關系:q=4x+36,且日銷售額不大于7000元時,需繳納銷售額5%的稅收,且銷售額超過7000元的需繳納銷售額10%的稅收,小王生產(chǎn)哪一種型號可使每日獲得的利潤最高?
注:日銷售額=日產(chǎn)量×銷售單價;每日利潤=日產(chǎn)量×(產(chǎn)品單價-成本)-稅收.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

3.數(shù)軸上表示數(shù)-5和表示-17的兩點之間的距離是12個單位長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

4.已知:如圖,AB平分∠CAD,∠C=∠D.求證:CB=DB.

查看答案和解析>>

同步練習冊答案