【題目】如圖,四邊形ABCD中,∠A=∠ABC=90°,AD=2,BC=6,點(diǎn)E是邊CD的中點(diǎn),連接BE并延長交AD的延長線于點(diǎn)F,連接CF.若△BCD是等腰三角形,則四邊形BDFC的面積為_____.
【答案】或
【解析】
分①BC=BD時,利用勾股定理列式求出AB,然后利用平行四邊形的面積公式列式計(jì)算即可得解;②BC=CD時,過點(diǎn)C作CG⊥AF于G,判斷出四邊形AGCB是矩形,再根據(jù)矩形的對邊相等可得AG=BC=3,然后求出DG=2,利用勾股定理列式求出CG,然后利用平行四邊形的面積列式計(jì)算即可得解;③BD=CD時,BC邊上的中線應(yīng)該與BC垂直,從而得到BC=2AD=2,矛盾.
解:①BC=BD=6時,由勾股定理得,,
所以,四邊形BDFC的面積=;
②BC=CD=3時,過點(diǎn)C作CG⊥AF于G,則四邊形AGCB是矩形,
所以,AG=BC=6,
所以,DG=AG-AD=6-2=4,
由勾股定理得,,
所以,四邊形BDFC的面積=;
③BD=CD時,BC邊上的中線應(yīng)該與BC垂直,從而得到BC=2AD=4,矛盾,此時不成立;
綜上所述,四邊形BDFC的面積是或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,G是線段AB上一點(diǎn),AC和DG相交于點(diǎn)E.
(1)請先作出∠ABC的平分線BF,交AC于點(diǎn)F;(尺規(guī)作圖,保留作圖痕跡,不寫作法與證明)
(2)然后證明當(dāng):AD∥BC,AD=BC,∠ABC=2∠ADG時,DE=BF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=6,BC=,點(diǎn)E從A出發(fā)沿線段AC運(yùn)動至點(diǎn)C停止,ED⊥AB,EF⊥AC,將△ADE沿直線EF翻折得到△A′D′E,設(shè)DE=x,△A′D′E與△ABC重合部分的面積為y.
(1)當(dāng)x= 時,D′恰好落在BC上?
(2)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為推動“時刻聽黨話 永遠(yuǎn)跟黨走”校園主題教育活動,計(jì)劃開展四項(xiàng)活動:A:黨史演講比賽,B:黨史手抄報比賽,C:黨史知識競賽,D:紅色歌詠比賽.校團(tuán)委對學(xué)生最喜歡的一項(xiàng)活動進(jìn)行調(diào)查,隨機(jī)抽取了部分學(xué)生,并將調(diào)查結(jié)果繪制成圖1,圖2兩幅不完整的統(tǒng)計(jì)圖.請結(jié)合圖中信息解答下列問題:
(1)本次共調(diào)查了 名學(xué)生;
(2)將圖1的統(tǒng)計(jì)圖補(bǔ)充完整;
(3)已知在被調(diào)查的最喜歡“黨史知識競賽”項(xiàng)目的4個學(xué)生中只有1名女生,現(xiàn)從這4名學(xué)生中任意抽取2名學(xué)生參加該項(xiàng)目比賽,請用畫樹狀圖或列表的方法,求出恰好抽到一名男生一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°.
(1)用尺規(guī)在邊BC上求作一點(diǎn)P,使PA=PB(不寫作法,保留作圖痕跡);
(2)連接AP,若AP平分∠CAB,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了節(jié)省材料,某水產(chǎn)養(yǎng)殖戶利用水庫的一角∠MON(∠MON=135°)的兩邊為邊,用總長為120m的圍網(wǎng)在水庫中圍成了如圖所示的①②③三塊區(qū)域,其中區(qū)域①為直角三角形,區(qū)域②③為矩形,而且四邊形OBDG為直角梯形.
(1)若①②③這塊區(qū)域的面積相等,則OB的長為 m;
(2)設(shè)OB=xm,四邊形OBDG的面積為ym2,
①求y與x之的函數(shù)關(guān)系式,并注明自變量x的取值范圍;②x為何值時,y有最大值?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,點(diǎn)E是AD邊的中點(diǎn),點(diǎn)M是AB邊上的一個動點(diǎn)(不與點(diǎn)A重合),延長ME交CD的延長線于點(diǎn)N,連接MD,AN.
(1)求證:四邊形AMDN是平行四邊形.
(2)當(dāng)AM的值為何值時,四邊形AMDN是矩形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交
于點(diǎn)A(1,4)、點(diǎn)B(-4,n).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△OAB的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AC,BD相交于點(diǎn)O,BC=2OC,E為AB邊上一點(diǎn).
(1)若CE=6,∠ACE=15°,求BC的長;
(2)若F為BO上一點(diǎn),且BF=EF,G為CE中點(diǎn),連接FG,AG,求證:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com