【題目】某次考試中,某班級的數(shù)學成績統(tǒng)計圖如下.下列說法錯誤的是( )

A. 得分在7080分之間的人數(shù)最多

B. 該班的總人數(shù)為40

C. 得分在90100分之間的人數(shù)最少

D. 及格(≥60分)人數(shù)是26

【答案】D

【解析】試題分析:觀察頻率分布直方圖,得分在7080分之間的人數(shù)是14人,最多;

該班的總人數(shù)為各組人數(shù)的和;

得分在90100分之間的人數(shù)最少,只有兩人;

及格(≥60分)人數(shù)是36人.

解:A、得分在7080分之間的人數(shù)最多,故正確;

B、2+4+8+12+14=40(人),該班的總人數(shù)為40人,故正確;

C、得分在90100分之間的人數(shù)最少,有2人,故正確;

D40﹣4=36(人),及格(≥60分)人數(shù)是36人,故D錯誤,故選D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】△ABC中,點D在邊BABA的延長線上,過點DDE∥BC,交∠ABC的角平分線于點E.

(1)如圖1,當點D在邊BA上時,點E恰好在邊AC上,求證:∠ADE=2∠DEB;

(2)如圖2,當點DBA的延長線上時,請直接寫出∠ADE∠DEB之間的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知三角形的兩條邊長分別是7和3,第三邊長為整數(shù),則這個三角形的周長是偶數(shù)的概率是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線l1l2,直線l和直線l1、l2交于點CD,在C、D之間有一點P,Al1上的一點,Bl2上的一點.

(1)如果P點在C、D之間運動時,如圖(1)問∠PAC,APB,PBD之間有何關系,并說明理由.

(2)若點PC、D兩點的外側運動時(P點與點C、D不重合),在圖(2),圖(3)中畫出圖形并探索∠PAC,APB,PBD之間的關系又是如何?并選擇其中一種情況說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平行四邊形ABCD中, AE、BF分別平分∠DAB和∠ABC交CD于點E、F.AE、BF交于點G.

(1)求證AE⊥BF

(2)判斷DE和CF的大小關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=a(x+2)2+3(a<0)的圖象如圖所示,則以下結論:①當x>﹣2時,y隨x的增大而增大;②不論a為任何負數(shù),該二次函數(shù)的最大值總是3;③當a=﹣1時,拋物線必過原點;④該拋物線和x軸總有兩個公共點.其中正確結論是( )

A.①②
B.②③
C.②④
D.①④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形ABCD中,ADBCB=90°,且AD=12cmAB=8cm,DC=10cm,若動點PA點出發(fā),以每秒2cm的速度沿線段AD向點D運動;動點QC點出發(fā)以每秒3cm的速度沿CBB點運動,當P點到達D點時,動點PQ同時停止運動,設點P、Q同時出發(fā),并運動了t秒,回答下列問題:

1BC= cm

2)當t為多少時,四邊形PQCD成為平行四邊形?

3)當t為多少時,四邊形PQCD為等腰梯形?

4)是否存在t,使得DQC是等腰三角形?若存在,請求出t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】太陽是巨大的熾熱氣體星球,正以每秒400萬噸的速度失去重量,太陽的直徑約為萬千米,而地球的半徑約為千米.

萬,萬,分別用科學記數(shù)法表示出來(結果保留到);

在一年內太陽要失去多少萬噸重量?(一年按天算,用科學記數(shù)法表示,并保留到

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市大力發(fā)展綠色交通,構建公共綠色交通體系,“共享單車”的投入使用給人們的出行帶來便利.小明隨機調查了若干市民租用共享單車的騎車時間t(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如圖統(tǒng)計圖,請根據(jù)圖中信息,解答下列問題:

(1)這次被調查的總人數(shù)是______;

(2)補全條形統(tǒng)計圖;

(3)在扇形統(tǒng)計圖中,求表示A組(t≤10分)的扇形圓心角的度數(shù);

(4)如果騎共享單車的平均速度為12km/h,請估算,在租用共享單車的市民中,騎車路程不超過6km的人數(shù)所占的百分比.

查看答案和解析>>

同步練習冊答案