【題目】如圖,E,F分別是正方形ABCD的邊CB,DC延長線上的點,且BE=CF,過點E作FG∥BF,交正方形外角的平分線CG于點G,連接GF.求證:
(1)AE⊥BF;
(2)四邊形BEGF是平行四邊形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)綜合實踐活動中,小明計劃測量城門大樓的高度,在點B處測得樓頂A的仰角為22°,他正對著城樓前進21米到達C處,再登上3米高的樓臺D處,并測得此時樓頂A的仰角為45°.
(1)求城門大樓的高度;
(2)每逢重大節(jié)日,城門大樓管理處都要在A,B之間拉上繩子,并在繩子上掛一些彩旗,請你求出A,B之間所掛彩旗的長度(結(jié)果保留整數(shù)).(參考數(shù)據(jù):sin22°≈,cos22°≈,tan22°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰三角形中,,作交AB于點M,交AC于點N.
(1)在圖1中,求證:;
(2)在圖2中的線段CB上取一動點P,過P作交CM于點E,作交BN于點F,求證:;
(3)在圖3中動點P在線段CB的延長線上,類似(2)過P作交CM的延長線于點E,作交NB的延長線于點F,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某出租公司有若干輛同一型號的貨車對外出租,每輛貨車的日租金實行淡季、旺季兩種價格標準,旺季每輛貨車的日租金比淡季上漲.據(jù)統(tǒng)計,淡季該公司平均每天有輛貨車未出租,日租金總收入為元;旺季所有的貨車每天能全部租出,日租金總收入為元.
(1)該出租公司這批對外出租的貨車共有多少輛?淡季每輛貨車的日租金多少元?
(2)經(jīng)市場調(diào)查發(fā)現(xiàn),在旺季如果每輛貨車的日租金每上漲元,每天租出去的貨車就會減少輛,不考慮其它因素,每輛貨車的日租金上漲多少元時,該出租公司的日租金總收入最高?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形是的圓內(nèi)接四邊形,線段是的直徑,連結(jié).點是線段上的一點,連結(jié),且,的延長線與的延長線相交與點.
(1)求證:四邊形是平行四邊形;
(2)若,
①求證:為等腰直角三角形;
②求的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的袋子中裝有四個小球,上面分別標有數(shù)字-2,-1,0,1,它們除了數(shù)字不一樣外,其它完全相同.
(1)隨機從袋子中摸出一個小球,摸出的球上面標的數(shù)字為正數(shù)的概率是__________.
(2)小聰先從袋子中隨機摸出一個小球,記下數(shù)字作為點的縱坐標,如圖,已知四邊形的四個頂點的坐標分別為,,,,請用畫樹狀圖或列表法,求點落在四邊形所圍成的部分內(nèi)(含邊界)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線過點,兩點,與y軸交于點C,.
(1)求拋物線的解析式及頂點D的坐標;
(2)過點A作,垂足為M,求證:四邊形ADBM為正方形;
(3)點P為拋物線在直線BC下方圖形上的一動點,當面積最大時,求點P的坐標;
(4)若點Q為線段OC上的一動點,問:是否存在最小值?若存在,求岀這個最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解七、八年級學(xué)生一分鐘跳繩情況,從這兩個年級隨機抽取名學(xué)生進行測試,并對測試成績(一分鐘跳繩次數(shù))進行整理、描述和分析,下面給出了部分信息:
七年級學(xué)生一分鐘跳繩成績頻數(shù)分布直方圖
七、八年級學(xué)生一分鐘跳繩成績分析表
七年級學(xué)生一分鐘跳繩成績(數(shù)據(jù)分組:)在這一組的是:
根據(jù)以上信息,回答下列問題:
表中 ;
在這次測試中,七年級甲同學(xué)的成績次,八年級乙同學(xué)的成績,他們的測試成績,在各自年級所抽取的名同學(xué)中,排名更靠前的是 (填“甲”或“乙”),理由是 .
該校七年級共有名學(xué)生,估計一分鐘跳繩不低于次的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D為AB的中點,AE∥CD,CE∥AB,連接DE交AC于點O.
(1)證明:四邊形ADCE為菱形.
(2)BC=6,AB=10,求菱形ADCE的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com