【題目】已知關(guān)于x的方程x2-m+3x+m+10

1)求證:不論m為何值,方程都有兩個不相等的實數(shù)根;

2)若方程一根為4,以此時方程兩根為等腰三角形兩邊長,求此三角形的周長.

【答案】1)見解析;(2

【解析】

1)根據(jù)判別式即可求出答案.

2)將x4代入原方程可求出m的值,求出m的值后代入原方程即可求出x的值.

解:(1)由題意可知:△=(m+324m+1

m2+2m+5

m2+2m+1+4

=(m+12+4,

∵(m+12+4>0

∴△>0,

∴不論m為何值,方程都有兩個不相等的實數(shù)根.

2)當x4代入x2﹣(m+3x+m+10

解得m,

m代入x2﹣(m+3x+m+10

∴原方程化為:3x214x+80,

解得x4x

腰長為時,,構(gòu)不成三角形;

腰長為4時, 該等腰三角形的周長為4+4+

所以此三角形的周長為.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】2016雙十一期間,某快遞公司計劃租用甲、乙兩種車輛快遞貨物,從貨物量來計算:若租用兩種車輛合運,10天可以完成任務(wù);若單獨租用乙種車輛,完成任務(wù)的天數(shù)是單獨租用甲種車輛完成任務(wù)天數(shù)的2倍.

(1)求甲、乙兩種車輛單獨完成任務(wù)分別需要多少天?

(2)已知租用甲、乙兩種車輛合運需租金65000元,甲種車輛每天的租金比乙種車輛每天的租金多1500元,試問:租甲和乙兩種車輛、單獨租甲種車輛、單獨租乙種車輛這三種租車方案中,哪一種租金最少?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,正方形的中心在原點O,且正方形的一組對邊與x軸平行,點P(3a,a)是反比例函數(shù)(k>0)的圖象上與正方形的一個交點.若圖中陰影部分的面積等于9,則這個反比例函數(shù)的解析式為  ▲  

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線)與,軸分別交于兩點,以為邊在直線的上方作正方形,反比例函數(shù)的圖象分別過點和點.,則的值為______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC,以AC為直徑的⊙OAB于點D,點E為弧AD的中點,連接CEAB于點F,且BF=BC

1)求證:BC是⊙O的切線;

2)若⊙O的半徑為2,=,求CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB6cmAD8cm,點P從點A出發(fā),以每秒一個單位的速度沿A→B→C的方向運動;同時點Q從點B出發(fā),以每秒2個單位的速度沿B→C→D的方向運動,當其中一點到達終點后兩點都停止運動.設(shè)兩點運動的時間為t秒.

1)當t   時,兩點停止運動;

2)設(shè)BPQ的面積面積為S(平方單位)

①求St之間的函數(shù)關(guān)系式;

②求t為何值時,BPQ面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知、、、、上五點,的直徑,的中點,延長到點.使,連接

(1)求線段的長;

(2)求證直線的切線.

(3)如圖,于點延長交PO于另一點,、,的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學課外興趣活動小組準備圍建一個矩形苗圃,其中一邊靠墻,另外三邊用長為30米的籬笆圍成.已知墻長為18(如圖所示),設(shè)這個苗圃垂直于墻的一邊長為x米.

(1)若苗圃的面積為72平方米,求x的值;

(2)這個苗圃的面積能否是120平方米?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著粵港澳大灣區(qū)建設(shè)的加速推進,廣東省正加速布局以5G等為代表的戰(zhàn)略性新興產(chǎn)業(yè),據(jù)統(tǒng)計,目前廣東5G基站的數(shù)量約1.5萬座,計劃到2020年底,全省5G基站數(shù)是目前的4倍,到2022年底,全省5G基站數(shù)量將達到17.34萬座。

1)計劃到2020年底,全省5G基站的數(shù)量是多少萬座?;

2)按照計劃,求2020年底到2022年底,全省5G基站數(shù)量的年平均增長率。

查看答案和解析>>

同步練習冊答案