【題目】如圖,直線BC與半徑為6的⊙O相切于點B,點M是圓上的動點,過點M作MC⊥BC,垂足為C,MC與⊙O交于點D,AB為⊙O的直徑,連接MA、MB,設MC的長為x,(6<x<12).
(1)當x=9時,求BM的長和△ABM的面積;
(2)是否存在點M,使MDDC=20?若存在,請求出x的值;若不存在,請說明理由.
【答案】(1)BM=6;S△ABM=18;(2)不存在;理由見解析.
【解析】
(1)利用切線的性質以及平行線的性質進而得出∠BMC=∠ABM以及∠BCM=∠AMB=90°,即可得出△BCM∽△AMB,根據(jù)相似三角形的性質即可求得BM的長,根據(jù)勾股定理求得BC,然后根據(jù)三角形面積公式求得△ABM的面積;
(2)首先得出四邊形OBCE為矩形,進而得出MDDC=2(x-6)(12-x),進而求出最值即可判定.
(1)∵直線BC與半徑為6的⊙O相切于點B,且AB為⊙O的直徑,
∴AB⊥BC,
又∵MC⊥BC,
∴AB∥MC,
∴∠BMC=∠ABM,
∵AB是⊙O的直徑,
∴∠AMB=90°,
∴∠BCM=∠AMB=90°,
∴△BCM∽△AMB,
∴,
∴BM2=ABMC=12×9=108,
∴BM=6,
∵BC2+MC2=BM2 ,
∴BC==3
∴S△ABM=ABBC=×12×3=18;
(2)過O作OE⊥MC,垂足為E,
∵MD是⊙O的弦, OE⊥MD,
∴ME=ED,
又∵∠CEO=∠ECB=∠OBC=90°,
∴四邊形OBCE為矩形,
∴CE=OB=6,
又∵MC=x,
∴ME=ED=MC﹣CE=x﹣6,MD=2(x﹣6),
∴CD=MC﹣MD=x﹣2(x﹣6)=12﹣x,
∴MDDC=2(x﹣6)(12﹣x)=﹣2x2+36x﹣144=﹣2(x﹣9)2+18
∵6<x<12,
∴當x=9時,MDDC的值最大,最大值是18,
∴不存在點M,使MDDC=20.
科目:初中數(shù)學 來源: 題型:
【題目】小明和小亮利用三張卡片做游戲,卡片上分別寫有A,B,B.這些卡片除字母外完全相同,從中隨機摸出一張,記下字母后放回,充分洗勻后,再從中摸出一張,如果兩次摸到卡片字母相同則小明勝,否則小亮勝,這個游戲對雙方公平嗎?請說明現(xiàn)由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的方程(m-1)x2-(m-2)x+m=0.
(1)當m取何值時方程有一個實數(shù)根?
(2)當m取何值時方程有兩個實數(shù)根?
(3)設方程的兩根分別為x1、x2,且x1x2=m+1,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題提出
(1)如圖①,在矩形ABCD中,AB=2AD,E為CD的中點,則∠AEB ∠ACB(填“>”“<”“=”);
問題探究
(2)如圖②,在正方形ABCD中,P為CD邊上的一個動點,當點P位于何處時,∠APB最大?并說明理由;
問題解決
(3)如圖③,在一幢大樓AD上裝有一塊矩形廣告牌,其側面上、下邊沿相距6米(即AB=6米),下邊沿到地面的距離BD=11.6米.如果小剛的睛睛距離地面的高度EF為1.6米,他從遠處正對廣告牌走近時,在P處看廣告效果最好(視角最大),請你在圖③中找到點P的位置,并計算此時小剛與大樓AD之間的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點D是∠AOB的平分線OC上任意一點,過D作DE⊥OB于E,以DE為半徑作⊙D,
①判斷⊙D與OA的位置關系, 并證明你的結論。
②通過上述證明,你還能得出哪些等量關系?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)y1=ax+b的圖象與x軸,y軸交于A,B;與直線y2=kx交于P(2,1),且PO=PA.
(1)求點A的坐標和k的值;
(2)求a,b的值;
(3)點D為直線y1=ax+b上一動點,其橫坐標為m,(m<2),DF⊥x軸于點F,交y2=kx于點E,且DF=3EF,求點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】沙坪壩區(qū)各街道居民積極響應“創(chuàng)文明城區(qū)”活動,據(jù)了解,某街道居民人口共有7.5萬人,街道劃分為A,B兩個社區(qū),B社區(qū)居民人口數(shù)量不超過A社區(qū)居民人口數(shù)量的2倍.
(1)求A社區(qū)居民人口至少有多少萬人?
(2)街道工作人員調查A,B兩個社區(qū)居民對“社會主義核心價值觀”知曉情況發(fā)現(xiàn):A社區(qū)有1.2萬人知曉,B社區(qū)有1.5萬人知曉,為了提高知曉率,街道工作人員用了兩個月的時間加強宣傳,A社區(qū)的知曉人數(shù)平均月增長率為m%,B社區(qū)的知曉人數(shù)第一個月增長了m%,第二月在第一個月的基礎上又增長了2m%,兩個月后,街道居民的知曉率達到92%,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A1,A2,A3…都在x軸上,點B1,B2,B3…都在直線y=x上,OA1=1,且△B1AA2,△B2A2A3,△B3A3A4,…△BnAnAn+1…分別是以A1,A2,A3,…An為直角頂點的等腰直角三角形,則△B2019A2019A2020的面積是( 。
A.22018B.22019C.24035D.24036
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市少體校為了從甲、乙兩名運動員中選出一名運動員參加省運動會百米比賽,組織了選拔測試,分別對兩人進行了五次測試,成績(單位:秒)以及平均數(shù)、方差如表:
甲 | 13 | 13 | 14 | 16 | 18 | x=14.8 | S=3.76 |
乙 | 14 | 14 | 15 | 15 | 16 | x=14.8 | S=0.56 |
學校決定派乙運動員參加比賽,理由是 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com