【題目】如圖,以△ABC的BC邊上一點O為圓心,經(jīng)過A,C兩點且與BC邊交于點E,點D為CE的下半圓弧的中點,連接AD交線段EO于點F,若AB=BF.
(1)求證:AB是⊙O的切線;
(2)若CF=4,DF=,求⊙O的半徑r及sinB.
【答案】(1)證明見解析;(2)r=3,sinB=.
【解析】試題分析:(1)連接OA、OD,如圖,根據(jù)垂徑定理得OD⊥BC,則∠D+∠OFD=90°,再由AB=BF,OA=OD得到∠BAF=∠BFA,∠OAD=∠D,加上∠BFA=∠OFD,所以∠OAD+∠BAF=90°,則OA⊥AB,然后根據(jù)切線的判定定理即可得到AB是⊙O切線;
(2)先表示出OF=4﹣r,OD=r,在Rt△DOF中利用勾股定理建立方程,解方程得到r的值,那么OA=3,OF=CF﹣OC=4﹣3=1,BO=BF+FO=AB+1.
然后在Rt△AOB中利用勾股定理,得到AB的值,再根據(jù)三角函數(shù)定義求出sinB.
試題解析:(1)證明:連接OA、OD,如圖,∵點D為CE的下半圓弧的中點,∴OD⊥BC,∴∠EOD=90°,∵AB=BF,OA=OD,∴∠BAF=∠BFA,∠OAD=∠D,而∠BFA=∠OFD,∴∠OAD+∠BAF=∠D+∠BFA=90°,即∠OAB=90°,∴OA⊥AB,∴AB是⊙O切線;
(2)解:OF=CF﹣OC=4﹣r,OD=r,DF=,在Rt△DOF中, ,即,解得:r=3或r=1(舍去);∴半徑r=3,∴OA=3,OF=CF﹣OC=4﹣3=1,BO=BF+FO=AB+1.在Rt△AOB中, ,∴,∴AB=4,OB=5,∴sinB==.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從甲地到乙地有兩條公路,一條是全長600km的普通公路,另一條是全長480km的高速公路,某客車在高速公路上行駛的平均速度比在普通公路上快45/ ,由高速公路從甲地到乙地所需的時間是由普通公路從甲地到乙地所需時間的一半,求該客車由高速公路從甲地到乙地所需的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點B(3,3)在雙曲線 (x>0)上,點D在雙曲線 (x<0)上,點A和點C分別在x軸,y軸的正半軸上,且點A,B,C,D構(gòu)成的四邊形為正方形.
(1)求k的值;
(3)求點A的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠BAC=90°,BC=10,tan∠ABC=,點O是AB邊上的動點,以O為圓心,OB為半徑的⊙O與邊BC的另一交點為D,過點D作AB的垂線,交于點E,連結(jié)BE、AE.
(1)當(dāng)AE∥BC(如圖(1))時,求⊙O的半徑;
(2)設(shè)BO=x,AE=y,求y關(guān)于x的函數(shù)關(guān)系式;
(3)若以A為圓心的⊙A與⊙O有公共點D、E,當(dāng)恰好也過點C時,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩同學(xué)只有一張乒乓球比賽的門票,誰都想去,最后商定通過轉(zhuǎn)盤游戲決定.游戲規(guī)則是:轉(zhuǎn)動下面平均分成三個扇形且標有不同顏色的轉(zhuǎn)盤,轉(zhuǎn)盤連續(xù)轉(zhuǎn)動兩次,若指針前后所指顏色相同,則甲去;否則乙去.(如果指針恰好停在分割線上,那么重轉(zhuǎn)一次,直到指針指向一種顏色為止)
(1)轉(zhuǎn)盤連續(xù)轉(zhuǎn)動兩次,指針所指顏色共有幾種情況?通過畫樹狀圖或列表法加以說明;
(2)你認為這個游戲公平嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題:
云陽縣多集合生態(tài)農(nóng)業(yè)有限公司在2018年種植玉米的平均畝產(chǎn)量為0. 75噸,該公司總結(jié)了種植玉米的經(jīng)驗,2019年該公司種植玉米的情況是:種植面積比2018年減少了10%、平均畝產(chǎn)量比2018年增加了0. 2噸,總產(chǎn)量比2018年增加了8. 4噸.
(1)求2018年該公司種植玉米的面積;
(2)若2019年該公司種植玉米的人數(shù)比2018年少了12人,人均種植面積比2018年增加了17%,求2019年該公司種植玉米的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在水平地面點A處有一網(wǎng)球發(fā)射器向空中發(fā)射網(wǎng)球,網(wǎng)球飛行路線是一條拋物線,在地面上落點為B,有人在直線AB上點C(靠點B一側(cè))豎直向上擺放若干個無蓋的圓柱形桶.試圖讓網(wǎng)球落入桶內(nèi),已知AB=4米,AC=3米,網(wǎng)球飛行最大高度OM=5米,圓柱形桶的直徑為0.5米,高為0.3米(網(wǎng)球的體積和圓柱形桶的厚度忽略不計).當(dāng)豎直擺放圓柱形桶至少________個時,網(wǎng)球可以落入桶內(nèi).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我校圖書館大樓工程在招標時,接到甲乙兩個工程隊的投標書,每施工一個月,需付甲工程隊工程款16萬元,付乙工程隊12萬元。工程領(lǐng)導(dǎo)小組根據(jù)甲乙兩隊的投標書測算,可有三種施工方案:
(1)甲隊單獨完成此項工程剛好如期完工;
(2)乙隊單獨完成此項工程要比規(guī)定工期多用3個月;
(3)若甲乙兩隊合作2個月,剩下的工程由乙隊獨做也正好如期完工。
你覺得哪一種施工方案最節(jié)省工程款,說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com