【題目】在平面上有且只有4個(gè)點(diǎn),這4個(gè)點(diǎn)中有一個(gè)獨(dú)特的性質(zhì):連結(jié)每兩點(diǎn)可得到6條線段,這6條線段有且只有兩種長度.我們把這四個(gè)點(diǎn)稱作準(zhǔn)等距點(diǎn).例如正方形ABCD的四個(gè)頂點(diǎn)(如圖1),有AB=BC=CD=DA,AC=BD.其實(shí)滿足這樣性質(zhì)的圖形有很多,如圖2A、BCO四個(gè)點(diǎn),滿足AB=BC=CAOA=OB=OC;如圖3A、B、C、O四個(gè)點(diǎn),滿足OA=OB=OC=BC,AB=AC

1)如圖,若等腰梯形ABCD的四個(gè)頂點(diǎn)是準(zhǔn)等距點(diǎn),且AD∥BC

寫出相等的線段(不再添加字母);

∠BCD的度數(shù).

2)請?jiān)佼嫵鲆粋(gè)四邊形,使它的四個(gè)頂點(diǎn)為準(zhǔn)等距點(diǎn),并寫出相等的線段.

【答案】(1)AB=DC=AD, AC=BD=BC.②∠BCD=72°.(2)見解析.

【解析】

(1)①結(jié)合等腰梯形的性質(zhì)及題意所表述的含義可寫出符合題意的結(jié)論.②先證ABC≌△DCB,得出∠DBC=ACB,根據(jù)題意可求得∠BDC=BCD=2ACB,設(shè)∠ACB=x°,利用內(nèi)角和定理可得出答案.

(2)可選擇畫菱形.

解:(1)AB=DC=AD,AC=BD=BC,

②∵AC=BD,AB=DC,BC=BC,

∴△ABC≌△DCB,

∴∠DBC=ACB,

ADBC,

∴∠DAC=ACB,

DC=AD,DAC=ACD,

∴∠ACD=ACB,

BC=BD,BDC=BCD=2ACB,

設(shè)∠ACB=x°,則∠BDC=BCD=2x°,DBC=x°,

2x+2x+x=180,

解得x=36,

∴∠BCD=72°.

(2)所畫圖形如下:四邊形ABCD是菱形(∠DAB=60°),

AB=BC=CD=AD=BD.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面上,邊長為的正方形和短邊長為的矩形幾何中心重合,如圖①,當(dāng)正方形和矩形都水平放置時(shí),容易求出重疊面積

甲、乙、丙三位同學(xué)分別給出了兩個(gè)圖形不同的重疊方式;

甲:矩形繞著幾何中心旋轉(zhuǎn),從圖②到圖③的過程中,重疊面積大小不變.

乙:如圖④,矩形繞著幾何中心繼續(xù)旋轉(zhuǎn),矩形的兩條長邊與正方形的對角線平行時(shí),此時(shí)的重疊面積大于圖③的重疊面積.

丙:如圖⑤,將圖④中的矩形向左上方平移,使矩形的一條長邊恰好經(jīng)過正方形的對角線,此時(shí)的重疊面積是個(gè)圖形中最小的.

下列說法正確的是(

A.甲、乙、丙都對B.只有乙對C.只有甲不對D.甲、乙、丙都不對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,ACBC,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,得到△ADE,連接BE,則∠BED的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)解析式為ymx22mx+m,二次函數(shù)與x軸交于A、B兩點(diǎn)(BA右側(cè)),與y軸交于C點(diǎn),二次函數(shù)頂點(diǎn)為M.已知OMB90°

求頂點(diǎn)坐標(biāo).

求二次函數(shù)解析式.

③N為線段BM中點(diǎn),在二次函數(shù)的對稱軸上是否存在一點(diǎn)P,使得∠PON60°,若存在求出點(diǎn)P坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)中函數(shù)y與自變量x之間部分對應(yīng)值如下表所示,點(diǎn)在函數(shù)圖象上

x

0

1

2

3

y

m

n

3

n

則表格中的m______;當(dāng)時(shí),的大小關(guān)系為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰的一個(gè)銳角頂點(diǎn)上的一個(gè)動(dòng)點(diǎn),,腰與斜邊分別交于點(diǎn),分別過點(diǎn)的切線交于點(diǎn),且點(diǎn)恰好是腰上的點(diǎn),連接,若的半徑為4,則的最大值為:(

A.B.C.6D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,2)與(0,3)之間(不包括這兩點(diǎn)),對稱軸為直線x=2.下列結(jié)論:abc<0;9a+3b+c>0;③若點(diǎn)M(,y1),點(diǎn)N(,y2)是函數(shù)圖象上的兩點(diǎn),則y1<y2;<a<﹣其中正確結(jié)論有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】郴州市正在創(chuàng)建全國文明城市,某校擬舉辦創(chuàng)文知識(shí)搶答賽,欲購買A、B兩種獎(jiǎng)品以鼓勵(lì)搶答者.如果購買A20件,B15件,共需380元;如果購買A15件,B10件,共需280元.

(1)A、B兩種獎(jiǎng)品每件各多少元?

(2)現(xiàn)要購買A、B兩種獎(jiǎng)品共100件,總費(fèi)用不超過900元,那么A種獎(jiǎng)品最多購買多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn)連接點(diǎn)是第一象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn),點(diǎn)的橫坐標(biāo)為,過點(diǎn)軸,垂足為點(diǎn)于點(diǎn)過點(diǎn)軸于點(diǎn),交于點(diǎn)

1)求三點(diǎn)的坐標(biāo);

2)試探究在點(diǎn)運(yùn)動(dòng)過程中,是否存在這樣的點(diǎn)使得以點(diǎn)為頂點(diǎn)的三角形是等腰三角形,若存在,請求出此時(shí)點(diǎn)的坐標(biāo);若不存在,請說明理由;

3m是點(diǎn)的橫坐標(biāo),請用含的代數(shù)式表示線段的長,并求出為何值時(shí)有最大值.

查看答案和解析>>

同步練習(xí)冊答案