【題目】如圖①,將南北向的中山路與東西向的北京路看成兩條直線,十字路口記作點.甲從中山路上點出發(fā),騎車向北勻速直行;與此同時,乙從點出發(fā),沿北京路步行向東勻速直行.設(shè)出發(fā)時,甲、乙兩人與點的距離分別為、.已知、與之間的函數(shù)關(guān)系如圖②所示.
(1)求甲、乙兩人的速度;
(2)當(dāng)取何值時,甲、乙兩人之間的距離最短?
【答案】(1)甲的速度為,乙的速度為.(2)當(dāng)時,甲、乙兩人之間的距離最短.
【解析】
(1)設(shè)甲、乙兩人的速度,并依題意寫出函數(shù)關(guān)系式,再根據(jù)圖②中函數(shù)圖象交點列方程組求解;
(2)設(shè)甲、乙之間距離為,由勾股定理可得,根據(jù)二次函數(shù)最值即可得出結(jié)論.
(1)設(shè)甲、乙兩人的速度分別為,,甲從B到A用時為p分鐘,則:
,
,
由圖②知: 或時,,
則有,解得: ,
p=1200÷240=5,
答:甲的速度為,乙的速度為;
(2)設(shè)甲、乙之間距離為,
則,
當(dāng)時,的最小值為,即的最小值為,
答:當(dāng)時,甲、乙兩人之間的距離最短.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與頂點為的拋物線的交點在軸上,交點在軸上.
(1)求拋物線的解析式.
(2)是否為直角三角形,請說明理由.
(3)在第二象限的拋物線上,是否存在異于頂點的點,使與的面積相等?若存在,求出符合條件的點坐標(biāo).若不存在,請說明理由.
(4)在第三象限的拋物線上求出點,使.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,,,連接.以點為圓心,以任意長為半徑作弧,交,分別于點,:分別以點,為圓心,以大于長為半徑作弧,兩弧相交于點:作射線,交于點.則的面積為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售10臺A型和20臺B型加濕器的利潤為2500元,銷售20臺A型和10臺B型加濕器的利潤為2000元
(1)求每臺A型加濕器和B型加濕器的銷售利潤;
(2)該商店計劃一次購進兩種型號的加濕器共100臺,其中B型加濕器的進貨量不超過A型加濕器的2倍,設(shè)購進A型加濕器x臺.這100臺加濕器的銷售總利潤為y元
①求y關(guān)于x的函數(shù)關(guān)系式;
②該商店應(yīng)怎樣進貨才能使銷售總利潤最大?
(3)實際進貨時,廠家對A型加濕器出廠價下調(diào)m(0<m<100)元,且限定商店最多購進A型加濕器70臺,若商店保持兩種加濕器的售價不變,請你根據(jù)以上信息及(2)中條件,設(shè)計出使這100臺加濕器銷售總利潤最大的進貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=﹣x2+6x﹣5的圖象與x軸交于A、B兩點,與y軸交于點C,其頂點為P,連接PA、AC、CP,過點C作y軸的垂線l.
(1)P的坐標(biāo) ,C的坐標(biāo) ;
(2)直線1上是否存在點Q,使△PBQ的面積等于△PAC面積的2倍?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形EFGH的頂點E,G分別在菱形ABCD的邊AD,BC上,頂點F,H在菱形ABCD的對角線BD上.
(1)求證:BG=DE;
(2)若E為AD中點,FH=2,求菱形ABCD的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車銷售公司一位銷售經(jīng)理1~5月份的汽車銷售統(tǒng)計圖如下(兩幅統(tǒng)計圖均不完整);
請根據(jù)圖中信息,解答下列問題:
(1)若1月的銷售量是2月的銷售量的倍,補全圖1中銷售量折線統(tǒng)計圖;
(2)在圖2中,2月的銷售量所對應(yīng)的扇形的圓心角大小為 ;
(3)據(jù)此估算本年度汽車銷售的總量是多少?
(4)已知5月份銷售的車中有輛國產(chǎn)車和輛合資車,國產(chǎn)車分別用表示,合資車分別用表示,現(xiàn)從這輛車中隨機抽取兩輛車參加公司的回饋活動,請用畫樹狀圖或列表法,求出“抽到的兩輛車都是國產(chǎn)車”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,每個圖案均由邊長相等的黑、白兩色正方形按規(guī)律拼接而成,照此規(guī)律,第n個圖案中白色正方形比黑色正方形多________個.(用含n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,E是AB的中點,AD//EC,∠AED=∠B.
(1)求證:△AED≌△EBC;
(2)當(dāng)AB=6時,求CD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com