【題目】如圖①,將南北向的中山路與東西向的北京路看成兩條直線,十字路口記作點.甲從中山路上點出發(fā),騎車向北勻速直行;與此同時,乙從點出發(fā),沿北京路步行向東勻速直行.設(shè)出發(fā)時,甲、乙兩人與點的距離分別為.已知、之間的函數(shù)關(guān)系如圖②所示.

1)求甲、乙兩人的速度;

2)當(dāng)取何值時,甲、乙兩人之間的距離最短?

【答案】1)甲的速度為,乙的速度為.(2)當(dāng)時,甲、乙兩人之間的距離最短.

【解析】

(1)設(shè)甲、乙兩人的速度,并依題意寫出函數(shù)關(guān)系式,再根據(jù)圖中函數(shù)圖象交點列方程組求解;

(2)設(shè)甲、乙之間距離為,由勾股定理可得,根據(jù)二次函數(shù)最值即可得出結(jié)論.

(1)設(shè)甲、乙兩人的速度分別為,甲從BA用時為p分鐘,則:

,

由圖知: 時,,

則有,解得:

p=1200÷240=5,

答:甲的速度為,乙的速度為;

(2)設(shè)甲、乙之間距離為

,

當(dāng)時,的最小值為,即的最小值為,

答:當(dāng)時,甲、乙兩人之間的距離最短.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與頂點為的拋物線的交點軸上,交點軸上.

1)求拋物線的解析式.

2是否為直角三角形,請說明理由.

3)在第二象限的拋物線上,是否存在異于頂點的點,使的面積相等?若存在,求出符合條件的點坐標(biāo).若不存在,請說明理由.

4)在第三象限的拋物線上求出點,使

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,,連接.以點為圓心,以任意長為半徑作弧,交,分別于點,:分別以點,為圓心,以大于長為半徑作弧,兩弧相交于點:作射線,交于點.則的面積為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售10A型和20B型加濕器的利潤為2500元,銷售20A型和10B型加濕器的利潤為2000

(1)求每臺A型加濕器和B型加濕器的銷售利潤;

(2)該商店計劃一次購進兩種型號的加濕器共100臺,其中B型加濕器的進貨量不超過A型加濕器的2倍,設(shè)購進A型加濕器x臺.這100臺加濕器的銷售總利潤為y

①求y關(guān)于x的函數(shù)關(guān)系式;

②該商店應(yīng)怎樣進貨才能使銷售總利潤最大?

(3)實際進貨時,廠家對A型加濕器出廠價下調(diào)m(0<m<100)元,且限定商店最多購進A型加濕器70臺,若商店保持兩種加濕器的售價不變,請你根據(jù)以上信息及(2)中條件,設(shè)計出使這100臺加濕器銷售總利潤最大的進貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=﹣x2+6x5的圖象與x軸交于A、B兩點,與y軸交于點C,其頂點為P,連接PA、AC、CP,過點Cy軸的垂線l

1P的坐標(biāo)   C的坐標(biāo)   ;

2)直線1上是否存在點Q,使△PBQ的面積等于△PAC面積的2倍?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形EFGH的頂點E,G分別在菱形ABCD的邊ADBC上,頂點FH在菱形ABCD的對角線BD上.

1)求證:BG=DE;

2)若EAD中點,FH=2,求菱形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某汽車銷售公司一位銷售經(jīng)理1~5月份的汽車銷售統(tǒng)計圖如下(兩幅統(tǒng)計圖均不完整);


請根據(jù)圖中信息,解答下列問題:

1)若1月的銷售量是2月的銷售量的倍,補全圖1中銷售量折線統(tǒng)計圖;

2)在圖2中,2月的銷售量所對應(yīng)的扇形的圓心角大小為 ;

3)據(jù)此估算本年度汽車銷售的總量是多少?

4)已知5月份銷售的車中有輛國產(chǎn)車和輛合資車,國產(chǎn)車分別用表示,合資車分別用表示,現(xiàn)從這輛車中隨機抽取兩輛車參加公司的回饋活動,請用畫樹狀圖或列表法,求出抽到的兩輛車都是國產(chǎn)車的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,每個圖案均由邊長相等的黑、白兩色正方形按規(guī)律拼接而成,照此規(guī)律,第n個圖案中白色正方形比黑色正方形多________.(用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,EAB的中點,AD//EC,AED=B.

(1)求證:AED≌△EBC;

(2)當(dāng)AB=6時,求CD的長.

查看答案和解析>>

同步練習(xí)冊答案