【題目】如圖,在矩形ABCD中,點(diǎn)E是AD上的一個動點(diǎn),連接BE,作點(diǎn)A關(guān)于BE的對稱點(diǎn)F,且點(diǎn)F落在矩形ABCD的內(nèi)部,連結(jié)AF、BF、EF,過點(diǎn)F作GF⊥AF交AD于點(diǎn)G,設(shè)AD:AE=n.
(1)線段AE和線段EG的數(shù)量關(guān)系是: ;
(2)如圖②,當(dāng)點(diǎn)F落在AC上時,用含n的代數(shù)式表示AD:AB的值;
(3)若AD=4AB,且△FCG為直角三角形,求n的值.(直接寫出結(jié)果).
【答案】(1)AE=EG;(2);(3)n=16或n=8+4
【解析】
(1)直接利用等角的余角相等得出∠FGA=∠EFG,即可得出EG=EF,代換即可;
(2)先判斷出△ABE∽△DAC,得出比例式用AB=DC代換化簡即可得出結(jié)論;
(3)先判斷出只有∠CFG=90°或∠CGF=90°,分兩種情況建立方程求解即可.
解:設(shè)AE=a,則AD=na,
(1)由對稱知,AE=FE,
∴∠EAF=∠EFA,
∵GF⊥AF,
∴∠EAF+∠FGA=∠EFA+∠EFG=90°,
∴∠FGA=∠EFG,
∴EG=EF,
∴AE=EG,
故答案為:AE=EG;
(2)如圖1,當(dāng)點(diǎn)F落在AC上時,
由對稱知,BE⊥AF,
∴∠ABE+∠BAC=90°,
∵∠DAC+∠BAC=90°,
∴∠ABE=∠DAC,
∵∠BAE=∠D=90°,
∴△ABE∽△DAC,
∵AB=DC,
∴AB2=ADAE=na2,
∵AB>0,
∴AB=a,
(3)若AD=4AB,則AB=
如圖2,當(dāng)點(diǎn)F落在線段BC上時,
EF=AE=AB=a,此時=a,
∴n=4,
∴當(dāng)點(diǎn)F落在矩形內(nèi)部時,n>4,
∵點(diǎn)F落在矩形內(nèi)部,點(diǎn)G在AD上,
① 當(dāng)時,如圖3,
則點(diǎn)F落在AC上,由(2)得,
②當(dāng)時,∠CGD+∠AGF=90°,
∵∠FAG+∠AGF=90°,
∴∠CGD=∠FAG=∠ABE,
∵∠BAE=∠D=90°,
∴△ABE∽△DGC,
∴ABDC=DGAE,
∵DG=AD﹣AE﹣EG=na﹣2a=(n﹣2)a,
∴()2=(n﹣2)aa,
∴n=或n=(由于n>4,所以舍),
即:n=8+4
綜上所述,當(dāng)或n=8+4時,△FCG為直角三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D在半圓O上,半徑OB=2,AD=10,點(diǎn)C在弧BD上移動,連接AC,H是AC上一點(diǎn),∠DHC=90°,連接BH,點(diǎn)C在移動的過程中,BH的最小值是( )
A. 5B. 6C. 7D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是王阿姨晚飯后步行的路程s(單位:m)與時間t(單位:min)的函數(shù)圖象,其中曲線段AB是以B為頂點(diǎn)的拋物線一部分.下列說法不正確的是( )
A.25min~50min,王阿姨步行的路程為800m
B.線段CD的函數(shù)解析式為
C.5min~20min,王阿姨步行速度由慢到快
D.曲線段AB的函數(shù)解析式為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,PD切⊙O于點(diǎn)C,交AB的延長線于點(diǎn)D,且∠D=2∠CAD.
(1)求∠D的度數(shù);
(2)若CD=2,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在由邊長為1個單位長度的小正方形組成的10×10網(wǎng)格中,已知點(diǎn)O,A,B均為網(wǎng)格線的交點(diǎn).
(1)在給定的網(wǎng)格中,以點(diǎn)O為位似中心,將線段AB放大為原來的2倍,得到線段(點(diǎn)A,B的對應(yīng)點(diǎn)分別為).畫出線段;
(2)將線段繞點(diǎn)逆時針旋轉(zhuǎn)90°得到線段.畫出線段;
(3)以為頂點(diǎn)的四邊形的面積是 個平方單位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在平面直角坐標(biāo)系中,△OAB的頂點(diǎn)坐標(biāo)分別是O(0,0),A(2,4),B(6,0).
(1)以原點(diǎn)O為位似中心,在點(diǎn)O的異側(cè)畫出△OAB的位似圖形△OA1B1,使它與△OAB的相似比是1:2.
(2)寫出點(diǎn)A1、B1的坐標(biāo).
(3)若△OAB關(guān)于點(diǎn)O的位似圖形△OA2B2中,點(diǎn)A的對應(yīng)點(diǎn)A2的坐標(biāo)為(﹣3,﹣6),則△OA2B2與△OAB的相似比為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,點(diǎn)E、F是矩形ABCD外兩點(diǎn),AE⊥CF于H,AD=3,DC=4,DE=,∠EDF=90°,則DF的長是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,點(diǎn)D是BC中點(diǎn),AE∥BC,CE∥AD.
(1)求證:四邊形ADCE是菱形;
(2)過點(diǎn)D作DF⊥CE于點(diǎn)F,∠B=60°,AB=6,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC=6.點(diǎn)P在邊AC上運(yùn)動,過點(diǎn)P作PD⊥AB于點(diǎn)D,以AP、AD為鄰邊作PADE.設(shè)□PADE與△ABC重疊部分圖形的面積為y,線段AP的長為x(0<x≤6).
(1)求線段PE的長(用含x的代數(shù)式表示).
(2)當(dāng)點(diǎn)E落在邊BC上時,求x的值.
(3)求y與x之間的函數(shù)關(guān)系式.
(4)直接寫出點(diǎn)E到△ABC任意兩邊所在直線距離相等時x的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com