【題目】已知拋物線頂點坐標為(1,3),且過點A(2,1).
(1)求拋物線解析式;
(2)若拋物線與x軸兩交點分別為點B、C,求線段BC的長度.
【答案】
(1)解:設拋物線解析式為y=a(x﹣1)2+3,
把A(2,1)代入得a(2﹣1)2+3=1,解得a=﹣2,
所以拋物線解析式為y=﹣2(x﹣1)2+3
(2)解:y=0時,﹣2(x﹣1)2+3=0,
解得x1=1+ ,x2=1﹣ ,
所以BC=1+ ﹣(1﹣ )=
【解析】(1)由于已知頂點坐標,則可設頂點式y(tǒng)=a(x﹣1)2+3,然后把A點坐標代入求出a即可;(2)計算函數(shù)值為0時的自變量的值,得到拋物線與x軸交點的橫坐標,然后計算兩點間的距離即可.
【考點精析】解答此題的關鍵在于理解拋物線與坐標軸的交點的相關知識,掌握一元二次方程的解是其對應的二次函數(shù)的圖像與x軸的交點坐標.因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點.當b2-4ac>0時,圖像與x軸有兩個交點;當b2-4ac=0時,圖像與x軸有一個交點;當b2-4ac<0時,圖像與x軸沒有交點.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=6,∠A=135°,點P是菱形內(nèi)部一點,且滿足S△PCD=,則PC+PD的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論
①a>0,②b>0,③c>0,④b2﹣4ac>0
其中正確的有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知 AB 是⊙O 的直徑,點 C、D 在⊙O 上,過 D 點作 PF∥AC交⊙O 于 F,交 AB 于點 E,∠BPF=∠ADC
(1)求證:AEEB=DEEF.
(2)求證:BP 是⊙O 的切線:
(3)當?shù)陌霃綖?/span>,AC=2,BE=1 時,求 BP 的長,
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校學生會為了解本校初中學生每天做作業(yè)所用時間情況,采用問卷的方式對一部分學生進行調(diào)查.在確定調(diào)查對象時,大家提出以下幾種方案:A.對各班班長進行調(diào)查;B.對某班的全體學生進行調(diào)查;C.從全校每班隨機抽取5名學生進行調(diào)查.在問卷調(diào)查時,每位被調(diào)查的學生都選擇了問卷中適合自己的一個時間,學生會將收集到的數(shù)據(jù)整理后繪制成如圖所示的條形統(tǒng)計圖.
(1)為了使收集到的數(shù)據(jù)具有代表性.學生會在確定調(diào)查對象時應選擇方案________ (填A,B或C);
(2)被調(diào)查的學生每天做作業(yè)所用時間的眾數(shù)為________h;
(3)根據(jù)以上統(tǒng)計結(jié)果,估計該校900名初中學生中每天做作業(yè)用1.5 h的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從﹣2,﹣ , ,1,3五個數(shù)中任選1個數(shù),記為a,它的倒數(shù)記為b,將a,b代入不等式組 中,能使不等式組至少有兩個整數(shù)解的概率是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某高速鐵路工程指揮部,要對某路段工程進行招標,接到了甲、乙兩個工程隊的投標書.從投標書中得知:甲隊單獨完成這項工程所需天數(shù)是乙隊單獨完成這項工程所需天數(shù)的:若由甲隊先做20天,剩下的工程再由甲、乙兩隊合作60天完成.
(1)求甲、乙兩隊單獨完成這項工程各需多少天?
(2)已知甲隊每天的施工費用為8.6萬元,乙隊每天的施工費用為5.4萬元,工程預算的施工費用為1000萬元.若在甲、乙工程隊工作效率不變的情況下使施工時間最短,問擬安排預算的施工費用是否夠用?若不夠用,需追加預算多少萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的方程x2﹣2(k﹣1)x+k2=0有兩個實數(shù)根x1 , x2 .
(1)求k的取值范圍;
(2)若|x1+x2|=x1x2﹣1,求k的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com