【題目】閱讀理解:我們知道一般地,加減運算是互逆運算,乘除運算也是互逆運算;其實乘方運算也有逆運算;如我們規(guī)定式子23=8可以變形為log28=3, log525=2也可以變形為52=25.在式子23=8中, 3叫做以2為底8的對數(shù),記為log2 8.一般地,若an=b(a>0且a≠1,b>0),則叫做以a為底b的對數(shù),記為logab ,即 logab=n.根據(jù)上面的規(guī)定,請解決下列問題:
(1)計算:log3 1= , log2 32=________, log216+ log24 = ,
(2)小明在計算log1025+log104 的時候,采用了以下方法:
設(shè)log1025=x, log104=y
∴ 10x=25 10y=4
∴ 10x+y=10x×10y=25×4=100=102
∴ x+y=2
∴ log1025+log104=2通過以上計算,我們猜想logaM+ logaN=__________,請證明你的猜想.
【答案】(1)0;5;6;(2)loga(M·N),證明見解析
【解析】
(1)根據(jù)題意,利用對數(shù)的逆運算計算即可;
(2)設(shè)logaM=x, logaN=y,根據(jù)對數(shù)的定義可得ax=M, ay=N,然后根據(jù)同底數(shù)冪乘法的逆用可得ax+y=M·N,再將其寫成對數(shù)的形式即可證出結(jié)論.
解:(1)∵,,,
∴log3 1=0,log2 32=5,log216+ log24 =4+2=6
故答案為:0;5;6.
(2)logaM+ logaN= loga(M·N),
證明:設(shè)logaM=x, logaN=y
∴ ax=M, ay=N
∴ ax+y=ax×ay=M·N
∴loga(M·N)= x+y
∴logaM+ logaN =x+y= loga(M·N)
故答案為:loga(M·N)
科目:初中數(shù)學 來源: 題型:
【題目】小明從家出發(fā),沿一條直道跑步,經(jīng)過一段時間原路返回,剛好在第回到家中.設(shè)小明出發(fā)第時的速度為,離家的距離為.與之間的函數(shù)關(guān)系如圖所示(圖中的空心圈表示不包含這一點).
(1)小明出發(fā)第時離家的距離為 ;
(2)當時,求與之間的函數(shù)表達式;
(3)畫出與之間的函數(shù)圖像.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠A=45°,AC=10cm,點D從點A出發(fā)沿AC方向以1cm/s的速度向點C勻速運動,同時點E從點B出發(fā)沿BA方向以cm/s的速度向點A勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動,設(shè)點D,E運動的時間是t(0<1≤10)s.過點E作EF⊥BC于點F,連接DE,DE。
(1)用含t的式子填空:BE=________cm ,CD=________cm。
(2)試說明,無論t為何值,四邊形ADEF都是平行四邊形;
(3)當t為何值時,△DEF為直角三角形?請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD沿直線AC對折后重合,如果AC,BD交于O,AB∥CD,則結(jié)論①AB=CD,②AD∥BC,③AC⊥BD,④AO=CO,⑤AB⊥BC,其中正確的結(jié)論是___(填序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,正方形的頂點在軸正半軸上,頂點在軸正半軸上,、的長分別是一元二次方程的兩個根().
(1)求點的坐標;
(2)求直線的解析式;
(3)在直線上是否存在點,使為等腰三角形?若存在,請直接寫出點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店準備銷售甲、乙兩種商品共 80 件,已知 2 件甲種商品 與 3 件乙種商品的銷售利潤相同,3 件甲種商品比 2 件乙商品的銷售利潤多 150 元。
(1)每件甲種商品與每件乙種商品的銷售利潤各多少元?
(2)若甲、乙兩種商品的銷售總利潤不低于 6600 元,則至少銷售甲種商品多少件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在中,,,,點從點出發(fā)沿方向以每秒2個單位長度的速度向點勻速運動,同時點從點出發(fā)沿方向以每秒1個單位長度的速度向點勻速運動,當其中一點到達終點時,另一個點也隨之停止運動.設(shè)點、運動的時間是秒,過點作于點,連接、.
(1)求證:;
(2)四邊形能夠成為菱形嗎?若能,求出的值;若不能,請說明理由;
(3)當________時,為直角三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】4月的某天小欣在“A超市”買了“雀巢巧克力”和“趣多多小餅干”共10包,已知“雀巢巧克力”每包22元,“趣多多小餅干”每包2元,總共花費了80元.
(1)請求出小欣在這次采購中,“雀巢巧克力”和“趣多多小餅干”各買了多少包?
(2)“五一”期間,小欣發(fā)現(xiàn),A、B兩超市以同樣的價格出售同樣的商品,并且又各自推出不同的優(yōu)惠方案:在A超市累計購物超過50元后,超過50元的部分打九折;在B超市累計購物超過100元后,超過100元的部分打八折.
①請問“五一”期間,若小欣購物金額超過100元,去哪家超市購物更劃算?
②“五一”期間,小欣又到“B超市”購買了一些“雀巢巧克力”,請問她至少購買多少包時,平均每包價格不超過20元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小剛準備用一段長 44 米的籬笆圍成三角形,用于養(yǎng)雞。已知一條邊長 x 米,第二條邊是第一條邊的 3 倍多 6 米。
(1)若能圍成一個等腰三角形,求三邊長
(2)若第一邊長最短,寫出 x 的取值范圍 。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com