【題目】如圖,△ABC和△ADE中,AB=AD=6,BC=DE,∠B=∠D=30°,邊AD與邊BC交于點(diǎn)P(不與點(diǎn)B,C重合),點(diǎn)B,E在AD異側(cè),I為△APC的內(nèi)心.
(1)求證:∠BAD=∠CAE;
(2)設(shè)AP=x,請(qǐng)用含x的式子表示PD,并求PD的最大值;
(3)當(dāng)AB⊥AC時(shí),∠AIC的取值范圍為m°<∠AIC<n°,分別直接寫(xiě)出m,n的值.
【答案】(1)詳見(jiàn)解析;(2)PD的最大值為3;(3)m=105,n=150.
【解析】
(1)根據(jù)ASA證明△ABC≌△ADE,得∠BAC=∠DAE,即可得出結(jié)論.
(2)PD=AD﹣AP=6﹣x.可得AP的最小值即AP⊥BC時(shí)AP的長(zhǎng)度,此時(shí)PD可得最大值.
(3)I為△APC的內(nèi)心,即I為△APC角平分線的交點(diǎn),應(yīng)用“三角形內(nèi)角和等于180°“及角平分線定義即可表示出∠AIC,從而得到m,n的值.
(1)如圖1.在△ABC和△ADE中,∵,∴△ABC≌△ADE(SAS),∴∠BAC=∠DAE,∴∠BAD=∠CAE.
(2)∵AD=6,AP=x,∴PD=6﹣x.
當(dāng)AD⊥BC時(shí),APAB=3最小,即PD=6﹣3=3為PD的最大值.
(3)如圖2,設(shè)∠BAP=α,則∠APC=α+30°.
∵AB⊥AC,∴∠BAC=90°,∠PCA=60°,∠PAC=90°﹣α.
∵I為△APC的內(nèi)心,∴AI平分∠PAC,CI平分∠PCA,∴∠IAC∠PAC,∠ICA∠PCA,∴∠AIC=180°﹣(∠IAC+∠ICA)=180°(∠PAC+∠PCA)=180°(90°﹣α+60°)α+105°
∵0<α<90°,∴105°α+105°<150°,即105°<∠AIC<150°,∴m=105,n=150.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是邊長(zhǎng)為的等邊三角形,動(dòng)點(diǎn)、同時(shí)從、兩點(diǎn)出發(fā),分別沿、方向勻速移動(dòng),它們的速度都是,當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),、兩點(diǎn)停止運(yùn)動(dòng),設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間.
解答下列各問(wèn)題:
(1)求的面積
(2)當(dāng)為何值時(shí),是直角三角形?
(3)設(shè)四邊形的面積為,求與的關(guān)系式;是否存在某一時(shí)刻,使四邊形的面積是面積的三分之二?如果存在,求出的值;不存在請(qǐng)說(shuō)明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,添加下列一個(gè)條件,不能使△ADE∽△ACB的是( ).
A. DE∥BCB. ∠AED=∠BC. =D. ∠ADE=∠C
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是()
A.方程是關(guān)于x的一元二次方程
B.不是二次根式
C.一元二次方程有兩個(gè)不相等的實(shí)數(shù)根
D.一元二次方程只有一個(gè)根x=3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,點(diǎn),函數(shù)()的圖象經(jīng)過(guò)平行四邊形的頂點(diǎn)和邊的中點(diǎn).
(1)求的值;
(2)若的面積等于6.求的值;
(3)若為函數(shù)()的圖象上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)作直線軸于點(diǎn),直線與軸上方的平行四邊形的一邊交于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為,當(dāng)時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:關(guān)于 x 的方程 2x2+kx﹣1=0.
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)若方程的一個(gè)根是﹣1,求另一個(gè)根及 k 值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,-3),點(diǎn)P是直線BC下方拋物線上的一個(gè)動(dòng)點(diǎn).
(1)求二次函數(shù)解析式;
(2)連接PO,PC,并將△POC沿y軸對(duì)折,得到四邊形.是否存在點(diǎn)P,使四邊形為菱形?若存在,求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是的直徑,點(diǎn)為的中點(diǎn),為的弦,且,垂足為,連接交于點(diǎn),連接,,.
(1)求證:;
(2)若,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=1,AD=2,點(diǎn)E是邊AD上的一個(gè)動(dòng)點(diǎn),把△BAE沿BE折疊,點(diǎn)A落在A′處,如果A′恰在矩形的對(duì)稱軸上,則AE的長(zhǎng)為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com