【題目】如圖表示一圓柱形輸水管的橫截面,陰影部分為有水部分,如果輸水管的半徑為5cm,水面寬AB為8cm,則水的最大深度CD為( )
A.4cm
B.3cm
C.2cm
D.1cm
【答案】C
【解析】解:如圖所示:∵輸水管的半徑為5cm,水面寬AB為8cm,水的最大深度為CD, ∴DO⊥AB,
∴AO=5cm,AC=4cm,
∴CO= =3(cm),
∴水的最大深度CD為:2cm.
故選:C.
【考點精析】根據題目的已知條件,利用勾股定理的概念和垂徑定理的推論的相關知識可以得到問題的答案,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;推論1:A、平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧B、弦的垂直平分線經過圓心,并且平分弦所對的兩條弧C、平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條;推論2 :圓的兩條平行弦所夾的弧相等.
科目:初中數學 來源: 題型:
【題目】如圖,圖中的小方格都是邊長為1的正方形,若點A(x,),點B(2x1,),點C(z+1,),已知點A,B關于原點對稱,點C在二,四象限平分線上.
(1)求A、B、C點的坐標;
(2)結合A、B、C的坐標,在圖中建立平面直角坐標系;
(3)在(2)的條件下,若P為y軸上的一個動點,請直接寫出使△PBC周長最小的點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1拋物線y=ax2+bx+c過 A(﹣1,0)、B(4,0)、C(0,2)三點.
(1)求拋物線解析式;
(2)點C,D關于拋物線對稱軸對稱,求△BCD的面積;
(3)如圖2,過點E(1,﹣1)作EF⊥x軸于點F,將△AEF繞平面內某點旋轉180°得△MNQ(點M、N、Q分別與A、E、F對應)使得M、N在拋物線上,求M、N的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面材料:
小偉遇到這樣一個問題:如圖1,在△ABC(其中∠BAC是一個可以變化的角)中,AB=2,AC=4,以BC為邊在BC的下方作等邊△PBC,求AP的最大值.
小偉是這樣思考的:利用變換和等邊三角形將邊的位置重新組合.他的方法是以點B為旋轉中心將△ABP逆時針旋轉60°得到△A′BC,連接A′A,當點A落在A′C上時,此題可解(如圖2).
請你回答:AP的最大值是 .
參考小偉同學思考問題的方法,解決下列問題:
如圖3,等腰Rt△ABC.邊AB=4,P為△ABC內部一點,則AP+BP+CP的最小值是 .(結果可以不化簡)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】菱形ABCD中,∠B=60°,∠MAN=60°,射線AM交直線BC于點E,射線AN交直線CD于點F,連結EF,請解答下列問題:
(1)如圖1,求證:EC+FC=AC;
(2)將∠MAN繞點A旋轉,如圖2,如圖3,請直接寫出線段EC,FC,AC之間的數量關系,不需要證明;
(3)若S菱形ABCD=18 ,∠CAE=30°,則CF=
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F點若點D為BC邊的中點,點M為線段EF上一動點,則周長的最小值為
A. 6 B. 8 C. 10 D. 12
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,A,B為x軸上兩點,C、D為y軸上的兩點,經過點A,C,B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封閉曲線成為“蛋線”.已知點C的坐標為(0,﹣ ),點M是拋物線C2:y=mx2﹣2mx﹣3m(m<0)的頂點.
(1)求A、B兩點的坐標;
(2)“蛋線”在第四象限上是否存在一點P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面材料:
數學活動課上,老師出了一道作圖問題:“如圖,已知直線l和直線l外一點P.用直尺和圓規(guī)作直線PQ,使PQ⊥l于點Q.”
小艾的作法如下:
(1)在直線l上任取點A,以A為圓心,AP長為半徑畫弧.
(2)在直線l上任取點B,以B為圓心,BP長為半徑畫。
(3)兩弧分別交于點P和點M
(4)連接PM,與直線l交于點Q,直線PQ即為所求.
老師表揚了小艾的作法是對的.
請回答:小艾這樣作圖的依據是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,有一個等腰直角三角形AOB,∠OAB=90°,直角邊AO在x軸上,且AO=1.將Rt△AOB繞原點O順時針旋轉90°得到等腰直角三角形A1OB1,且A1O=2AO,再將Rt△A1OB1繞原點O順時針旋轉90°得到等腰三角形A2OB2,且A2O=2A1O…,依此規(guī)律,得到等腰直角三角形A2017OB2017.則點B2017的坐標是____________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com