【題目】如圖所示,在ABC中,DE分別是邊ABBC上的動(dòng)點(diǎn),且,連結(jié)AD、AE,點(diǎn)M、N、P分別是CD、AEAC的中點(diǎn),設(shè)

1)觀察猜想

①在求的值時(shí),小明運(yùn)用從特殊到一般的方法,先令,解題思路如下:

如圖1,先由,得到,再由中位線的性質(zhì)得到

,進(jìn)而得出PMN為等邊三角形,∴

②如圖2,當(dāng),仿照小明的思路求的值;

2)探究證明

如圖3,試猜想的值是否與的度數(shù)有關(guān),若有關(guān),請(qǐng)用含的式子表示出,若無(wú)關(guān),請(qǐng)說(shuō)明理由;

3)拓展應(yīng)用

如圖4,,點(diǎn)D、E分別是射線ABCB上的動(dòng)點(diǎn),且,點(diǎn)M、N、P分別是線段CDAE、AC的中點(diǎn),當(dāng)時(shí),請(qǐng)直接寫(xiě)出MN的長(zhǎng).

【答案】1)②;(2的值與的度數(shù)有關(guān),;(3MN的長(zhǎng)為

【解析】

1)②先根據(jù)線段的和差求出,再根據(jù)中位線定理、平行線的性質(zhì)得出,從而可得出,然后根據(jù)等腰直角三角形的性質(zhì)即可得;

2)參照題(1)的方法,得出為等腰三角形和的度數(shù),再利用等腰三角形的性質(zhì)即可求出答案;

3)分兩種情況:當(dāng)點(diǎn)D、E分別是邊AB、CB上的動(dòng)點(diǎn)時(shí)和當(dāng)點(diǎn)D、E分別是邊AB、CB的延長(zhǎng)線上的動(dòng)點(diǎn)時(shí),如圖(見(jiàn)解析),先利用等腰三角形的性質(zhì)與判定得出,再根據(jù)相似三角形的判定與性質(zhì)得出BC、CE的長(zhǎng),由根據(jù)等腰三角形的三線合一性得出,從而可得的值,最后分別利用(2)的結(jié)論即可得MN的長(zhǎng).

1)②

為等腰直角三角形,

∵點(diǎn)M、N、P分別是CD、AEAC的中點(diǎn)

為等腰直角三角形,

2的值與的度數(shù)有關(guān),求解過(guò)程如下:

由(1)可知,,即為等腰三角形

如圖5,作

中,,即

3)依題意,分以下兩種情況:

①當(dāng)點(diǎn)DE分別是邊AB、CB上的動(dòng)點(diǎn)時(shí)

如圖6,作的角平分線交AB邊于點(diǎn)F,并連結(jié)BP

,

,即

設(shè),則

解得(不符題意,舍去)

由(2)可知,

點(diǎn)PAC上的中點(diǎn)

(等腰三角形的三線合一)

中,,即

②如圖7,當(dāng)點(diǎn)D、E分別是邊AB、CB的延長(zhǎng)線上的動(dòng)點(diǎn)時(shí)

同理可得:

綜上,MN的長(zhǎng)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)yax2bx4的圖象與x軸交于點(diǎn)A(1,0),B(4,0),與y軸交于點(diǎn)C,拋物線的頂點(diǎn)為D,其對(duì)稱軸與線段BC交于點(diǎn)E.垂直于x軸的動(dòng)直線l分別交拋物線和線段BC于點(diǎn)P和點(diǎn)F,動(dòng)直線l在拋物線的對(duì)稱軸的右側(cè)(不含對(duì)稱軸)沿x軸正方向移動(dòng)到B點(diǎn).

1)求出二次函數(shù)yax2bx4BC所在直線的表達(dá)式;

2)在動(dòng)直線l移動(dòng)的過(guò)程中,試求使四邊形DEFP為平行四邊形的點(diǎn)P的坐標(biāo);

3)連接CP,CD,在移動(dòng)直線l移動(dòng)的過(guò)程中,拋物線上是否存在點(diǎn)P,使得以點(diǎn)P,C,F為頂點(diǎn)的三角形與DCE相似,如果存在,求出點(diǎn)P的坐標(biāo),如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,菱形ABCD中,E,F分別是對(duì)角線BD和邊BC上一點(diǎn),且滿足∠EAF=ABD=

1)如圖(1),當(dāng)=45°時(shí),求證:AF=AE

2)如圖(2),探究AFAE的數(shù)量關(guān)系(用含的銳角三角函數(shù)表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線與反比例函數(shù)的圖像在第一象限有一個(gè)公共點(diǎn),其橫坐標(biāo)為1,則一次函數(shù)的圖像可能是( )

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)生社團(tuán)是指學(xué)生在自愿基礎(chǔ)上結(jié)成的各種群眾性文化、藝術(shù)、學(xué)術(shù)團(tuán)體.不分年級(jí)、由興趣愛(ài)好相近的同學(xué)組成,在保證學(xué)生完成學(xué)習(xí)任務(wù)和不影響學(xué)校正常教學(xué)秩序的前提下開(kāi)展各種活動(dòng).某校就學(xué)生對(duì)籃球社團(tuán)、動(dòng)漫社團(tuán)、文學(xué)社團(tuán)和攝影社團(tuán)四個(gè)社團(tuán)選擇意向進(jìn)行了抽樣調(diào)查(每人選報(bào)一類),繪制了如圖所示的兩幅統(tǒng)計(jì)圖(不完整)

請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:

(1)求扇形統(tǒng)計(jì)圖中m的值,并補(bǔ)全條形統(tǒng)計(jì)圖;

(2)動(dòng)漫社團(tuán)活動(dòng)中,甲、乙、丙、丁、戊五名同學(xué)表現(xiàn)優(yōu)秀,現(xiàn)決定從這五名同學(xué)中任選兩名參加中學(xué)生原創(chuàng)動(dòng)漫大賽,恰好選中甲、乙兩位同學(xué)的概率為

(3)已知該校有1200名學(xué)生,請(qǐng)估計(jì)文學(xué)社團(tuán)共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校為獎(jiǎng)勵(lì)在家自主學(xué)習(xí)有突出表現(xiàn)的學(xué)生,決定購(gòu)買筆記本和鋼筆作為獎(jiǎng)品.已知1本筆記本和4支鋼筆共需100元,4本筆記本和6支鋼筆共需190元.

1)分別求一本筆記本和一支鋼筆的售價(jià);

2)若學(xué)校準(zhǔn)備購(gòu)進(jìn)這兩種獎(jiǎng)品共90份,并且筆記本的數(shù)量不多于鋼筆數(shù)量的3倍,請(qǐng)?jiān)O(shè)計(jì)出最省錢的購(gòu)買方案,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某游泳館每年夏季推出兩種游泳付費(fèi)方式,方式一:先購(gòu)買會(huì)員證,每張會(huì)員證100元,只限本人當(dāng)年使用,憑證游泳每次再付費(fèi)5元;方式二:不購(gòu)買會(huì)員證,每次游泳付費(fèi)9元.

設(shè)小明計(jì)劃今年夏季游泳次數(shù)為x(x為正整數(shù)).

(I)根據(jù)題意,填寫(xiě)下表:

游泳次數(shù)

10

15

20

x

方式一的總費(fèi)用(元)

150

175

______

______

方式二的總費(fèi)用(元)

90

135

______

______

(Ⅱ)若小明計(jì)劃今年夏季游泳的總費(fèi)用為270元,選擇哪種付費(fèi)方式,他游泳的次數(shù)比較多?

(Ⅲ)當(dāng)x>20時(shí),小明選擇哪種付費(fèi)方式更合算?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩輛汽車沿同一公路從A地出發(fā)前往路程為100千米的B地,乙車比甲車晚出發(fā)15分鐘,行駛過(guò)程中所行駛的路程分別用y1、y2(千米)表示,它們與甲車行駛的時(shí)間x(分鐘)之間的函數(shù)關(guān)系如圖所示.

1)分別求出y1、y2關(guān)于x的函數(shù)解析式并寫(xiě)出定義域;

2)乙車行駛多長(zhǎng)時(shí)間追上甲車?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四張質(zhì)地相同的卡片如圖所示.將卡片洗勻后,背面朝上放置在桌面上.

(1)求隨機(jī)抽取一張卡片,恰好得到數(shù)字2的概率;

(2)小貝和小晶想用以上四張卡片做游戲,游戲規(guī)則見(jiàn)信息圖.你認(rèn)為這個(gè)游戲公平嗎?請(qǐng)用列表法或畫(huà)樹(shù)形圖法說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案