【題目】如圖,平行四邊形ABCD的頂點C在y軸正半軸上,CD平行于x軸,直線AC交x軸于點E,BC⊥AC,連接BE,反比例函數(shù) (x>0)的圖象經(jīng)過點D.已知S△BCE=2,則k的值是( )
A.2
B.﹣2
C.3
D.4
【答案】D
【解析】設(shè)D點坐標(biāo)為(m,n),則AB=CD=m,
∵CD平行于x軸,AB∥CD,
∴∠BAC=∠CEO.
∵BC⊥AC,∠COE=90°,
∴∠BCA=∠COE=90°,
∴△ABC∽△ECO,
∴ = ,
∴BCEC=ABCO=mn.
∵點D在反比例函數(shù)y= 的圖象上,
∴k=mn=BCEC=2S△BCE=4.
所以答案是:D.
【考點精析】解答此題的關(guān)鍵在于理解平行四邊形的性質(zhì)的相關(guān)知識,掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分,以及對相似三角形的判定與性質(zhì)的理解,了解相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】感恩是中華民族的傳統(tǒng)美德,在4月份某校提出了“感恩父母、感恩老師、感恩他人”的“三感”教育活動.感恩事例有:A.給父母過一次生日;B .為父母做一次家務(wù)活,讓父母休息一天;C.給老師一個發(fā)自內(nèi)心的擁抱,并且與老師談心;D.幫助有困難的同學(xué)度過難關(guān).為了解學(xué)生對這四種感恩事例的情況,在全校范圍內(nèi)隨機(jī)抽取若干名學(xué)生,進(jìn)行問卷調(diào)查(每個被調(diào)查的同學(xué)在4種感恩事例中選擇最想做的一種),將數(shù)據(jù)進(jìn)行整理并繪制成以下兩幅統(tǒng)計圖(未畫完整).
(1)這次調(diào)查中,一共查了名學(xué)生;
(2)請補全扇形統(tǒng)計圖中的數(shù)據(jù)及條形統(tǒng)計圖;
(3)若有3名選 A的學(xué)生,1名選 C的學(xué)生組成志愿服務(wù)隊外出參加聯(lián)誼活動,欲從中隨機(jī)選出2人擔(dān)任活動負(fù)責(zé)人,請通過樹狀圖或列表求兩人均是選 A的學(xué)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,M,N分別是邊AB、BC的中點,E、F是邊AC上的三等分點,連接ME、NF且延長后交于點D,連接BE、BF
(1)求證:四邊形BFDE是平行四邊形;(2)當(dāng)△ABC滿足什么條件時四邊形BFDE是菱形,證明你的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△ADE中,邊AD與邊BC交于點P(不與點B、C重合),點B、E在AD異側(cè),OA、OC分別是∠PAC和∠PCA的角平分線.
(1)當(dāng)∠APC =60°時,求∠AOC的度數(shù);
(2)當(dāng)AB⊥AC,AB=AD=4,AC=3,BC=5時,設(shè)AP=x,用含x的式子表示PD,并求PD的最大值;
(3)當(dāng)AB⊥AC,∠B=20°時,∠AOC的取值范圍為α°<∠AOC <β°,直接寫出α、β的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點C(﹣3,0),點A,B分別在x軸,y軸的正半軸上,且滿足 +|OA﹣1|=0
(1)求點A,點B的坐標(biāo).
(2)若點P從C點出發(fā),以每秒1個單位的速度沿射線CB運動,連結(jié)AP.設(shè)△ABP的面積為S,點P的運動時間為t秒,求S與t的函數(shù)關(guān)系式,并寫出自變量的取值范圍.
(3)在(2)的條件下,是否存在點P,使以點A,B,P為頂點的三角形與△AOB相似?若存在,請直接寫出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點P是平面直角坐標(biāo)系中的一點且不在坐標(biāo)軸上,過點P向x軸、y軸作垂線段,若垂線段的長度的和為4,則點P叫做“垂距點”,例如:如圖中的點P(1,3)是“垂距點”.
(1)在點A(﹣2,2),,C(﹣1,5)是“垂距點”是 ;
(2)若是“垂距點”,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線PQ∥MN,點C是PQ、MN之間(不在直線PQ,MN上)的一個動點.
(1)若∠1與∠2都是銳角,如圖甲,請直接寫出∠C與∠1,∠2之間的數(shù)量關(guān)系;
(2)若把一塊三角尺(∠A=30°,∠C=90°)按如圖乙方式放置,點D,E,F是三角尺的邊與平行線的交點,若∠AEN=∠A,求∠BDF的度數(shù);
(3)將圖乙中的三角尺進(jìn)行適當(dāng)轉(zhuǎn)動,如圖丙,直角頂點C始終在兩條平行線之間,點G在線段CD上,連接EG,且有∠CEG=∠CEM,求值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,AB,BC,AC三邊的長分別為、、,求這個三角形的面積小輝同學(xué)在解答這道題時,先建立一個正方形網(wǎng)格每個小正方形的邊長為,再在網(wǎng)格中畫出格點的三個頂點都在正方形的頂點處,如圖所示,這樣不需要求的高,而借用網(wǎng)格就能計算出它的面積.
請你將的面積直接填寫在橫線上.______
已知,DE、EF、DF三邊的長分別為、、,
是否為直角形,并說明理由.
求這個三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣4與x軸交于A(4,0)、B(﹣2,0)兩點,與y軸交于點C,點P是線段AB上一動點(端點除外),過點P作PD∥AC,交BC于點D,連接CP.
(1)求該拋物線的解析式;
(2)當(dāng)動點P運動到何處時,BP2=BDBC;
(3)當(dāng)△PCD的面積最大時,求點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com