【題目】在平面直角坐標(biāo)系中,二次函數(shù)的圖象與軸正半軸交于點(diǎn).
求證:該二次函數(shù)的圖象與軸必有兩個(gè)交點(diǎn);
設(shè)該二次函數(shù)的圖象與軸的兩個(gè)交點(diǎn)中右側(cè)的交點(diǎn)為點(diǎn),若,將直線向下平移個(gè)單位得到直線,求直線的解析式;
在的條件下,設(shè)為二次函數(shù)圖象上的一個(gè)動(dòng)點(diǎn),當(dāng)時(shí),點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)都在直線的下方,求的取值范圍.
【答案】解析;直線; 的取值范圍為:.
【解析】
(1)直接利用根的判別式,結(jié)合完全平方公式求出△的符號(hào)進(jìn)而得出答案;
(2)首先求出B,A點(diǎn)坐標(biāo),進(jìn)而求出直線AB的解析式,再利用平移規(guī)律得出答案;
(3)根據(jù)當(dāng)-3<p<0時(shí),點(diǎn)M關(guān)于x軸的對(duì)稱(chēng)點(diǎn)都在直線l的下方,當(dāng)p=0時(shí),q=1;當(dāng)p=-3時(shí),q=12m+4;結(jié)合圖象可知:-(12m+4)≤2,即可得出m的取值范圍.
令,則
,
∵二次函數(shù)圖象與軸正半軸交于點(diǎn),
∴,且,
又∵,
∴,
∴,
∴該二次函數(shù)的圖象與軸必有兩個(gè)交點(diǎn);
令,
解得:,,
由得,故的坐標(biāo)為,
又因?yàn)?/span>,
所以,即,
則可求得直線的解析式為:.
再向下平移個(gè)單位可得到直線;
由得二次函數(shù)的解析式為:.
∵為二次函數(shù)圖象上的一個(gè)動(dòng)點(diǎn),
∴.
∴點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)的坐標(biāo)為.
∴點(diǎn)在二次函數(shù)上.
∵當(dāng)時(shí),點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)都在直線的下方,
當(dāng)時(shí),;當(dāng)時(shí),;
結(jié)合圖象可知:,
解得:.
∴的取值范圍為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖所示,在△ABC中,∠C=90°,BC=5cm,AC=7cm. 兩個(gè)動(dòng)點(diǎn)P、Q分別從B、C兩點(diǎn)同時(shí)出發(fā),其中點(diǎn)P以1厘米/秒的速度沿著線段BC向點(diǎn)C運(yùn)動(dòng),點(diǎn)Q以2厘米/秒的速度沿著線段CA向點(diǎn)A運(yùn)動(dòng).
(1)P、Q兩點(diǎn)在運(yùn)動(dòng)過(guò)程中,經(jīng)過(guò)幾秒后,△PCQ的面積等于4厘米2?經(jīng)過(guò)幾秒后PQ的長(zhǎng)度等于5厘米?
(2)在P、Q兩點(diǎn)在運(yùn)動(dòng)過(guò)程中,四邊形ABPQ的面積能否等于11厘米2?試說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是⊙O的內(nèi)接三角形,∠BAD是△ABC的一個(gè)外角,∠BAC、∠BAD的平分線分別交⊙O于點(diǎn)E、F.請(qǐng)你在圖上連接EF.(1)證明:EF是⊙O的直徑;(2)請(qǐng)你判斷EF與BC有怎樣的位置關(guān)系?并請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線的圖象如圖所示,下列四個(gè)判斷中正確的個(gè)數(shù)是( )
①,,;②;③;④.
A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一條拋物線與軸的交點(diǎn)為、兩點(diǎn),其頂點(diǎn)在折線上運(yùn)動(dòng).若、、的坐標(biāo)分別為、、、,點(diǎn)橫坐標(biāo)的最小值為,則點(diǎn)橫坐標(biāo)的最大值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與軸交于、兩點(diǎn),與軸交于點(diǎn),四邊形是矩形,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,已知點(diǎn)是線段上的動(dòng)點(diǎn),過(guò)點(diǎn)作軸交拋物線于點(diǎn),交于點(diǎn),交于點(diǎn).
求該拋物線的解析式;
當(dāng)點(diǎn)在直線上方時(shí),請(qǐng)用含的代數(shù)式表示的長(zhǎng)度;
在的條件下,是否存在這樣的點(diǎn),使得以、、為頂點(diǎn)的三角形與相似?若存在,求出此時(shí)的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果二次函數(shù)y=x2+(k+2)x+k+5的圖象與x軸的兩個(gè)不同交點(diǎn)的橫坐標(biāo)都是正的,那么k值應(yīng)為( 。
A. k>4或k<﹣5 B. ﹣5<k<﹣4 C. k≥﹣4或k≤﹣5 D. ﹣5≤k≤﹣4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=62°,則∠AEB=_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(20,0),點(diǎn)B的坐標(biāo)是(16,0),點(diǎn)C、D在以OA為直徑的半圓M上,且四邊形OCDB是平行四邊形,則點(diǎn)C的坐標(biāo)為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com