【題目】如圖,已知AB是⊙O的直徑,BC⊥AB,連結(jié)OC,弦AD∥OC,直線CD交BA的延長線于點E.
(1)求證:直線CD是⊙O的切線;
(2)若DE=2BC,AD=5,求OC的值.
【答案】(1)證明見解析;(2).
【解析】
試題(1)首選連接OD,易證得△COD≌△COB(SAS),然后由全等三角形的對應(yīng)角相等,求得∠CDO=90°,即可證得直線CD是⊙O的切線;
(2)由△COD≌△COB.可得CD=CB,即可得DE=2CD,易證得△EDA∽△ECO,然后由相似三角形的對應(yīng)邊成比例,求得AD:OC的值.
試題解析:(1)連結(jié)DO.
∵AD∥OC,
∴∠DAO=∠COB,∠ADO=∠COD.
又∵OA=OD,
∴∠DAO=∠ADO,
∴∠COD=∠COB. 3分
又∵CO=CO, OD=OB
∴△COD≌△COB(SAS) 4分
∴∠CDO=∠CBO=90°.
又∵點D在⊙O上,
∴CD是⊙O的切線.
(2)∵△COD≌△COB.
∴CD=CB.
∵DE=2BC,
∴ED=2CD.
∵AD∥OC,
∴△EDA∽△ECO.
∴,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 已知Rt△ABC中,AC=BC,∠C=90°,D為AB邊的中點,∠EDF=90°,∠EDF繞D點旋轉(zhuǎn),它的兩邊分別交AC、CB(或它們的延長線)于E、F.當(dāng)∠EDF繞D點旋轉(zhuǎn)到DE⊥AC于E時(如圖1),易證.當(dāng)∠EDF繞D點旋轉(zhuǎn)到DE和AC不垂直時,在圖2和圖3這兩種情況下,上述結(jié)論是否成立? 若成立,請給予證明;若不成立,,,又有怎樣的數(shù)量關(guān)系?請寫出你的猜想,不需證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC=8,點P為AB的中點,E為BC上一動點,過P點作FP⊥PE交AC于F點,經(jīng)過P、E、F三點確定⊙O.
(1)試說明:點C也一定在⊙O上.
(2)點E在運動過程中,∠PEF的度數(shù)是否變化?若不變,求出∠PEF的度數(shù);若變化,說明理由.
(3)求線段EF的取值范圍,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一塊含有45°的三角板ABC的頂點A放在⊙O上,且AC與⊙O相切于點A(如圖1),將△ABC從點A開始,繞著點A順時針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α(0°<α<135°),旋轉(zhuǎn)后,AC、AB分別與⊙O交于點E,F,連接EF(如圖2).已知AC=8,⊙O的半徑為4.
(1)在旋轉(zhuǎn)過程中,有以下幾個量:①弦EF的長;②的長;③∠AFE的度數(shù);④點O到EF的距離.其中不變的量是___________________(填序號);
(2)當(dāng)α=________°時,BC與⊙O相切(直接寫出答案);
(3)當(dāng)BC與⊙O相切時,求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在一條筆直的道路上相向而行,甲騎自行車從A地到B地,乙駕車從B地到A地,他們分別以不同的速度勻速行駛,已知甲先出發(fā)6分鐘后,乙才出發(fā),在整個過程中,甲、乙兩人的距離y(千米)與甲出發(fā)的時間x(分)之間的關(guān)系如圖所示,當(dāng)乙到達終點A時,甲還需 分鐘到達終點B.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線在坐標(biāo)系中的位置如圖所示,它與軸、軸的交點分別為、,點是其對稱軸上的動點,根據(jù)圖中提供的信息,給出以下結(jié)論:①;②是的一個根;③周長的最小值是.其中正確的是( )
A. 僅有①② B. 僅有②③ C. 僅有①③ D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的是( )
A. 希望小學(xué)初一年級的名同學(xué)中,至少有兩個生日相同的概率是
B. 在投擲骰子時,連投兩次點數(shù)相同的概率與連投兩次點數(shù)都為的概率相等
C. 我們小組共名同學(xué),他們中肯定有兩人在同一月過生日
D. 一個游戲的中獎率是,買張獎券,一定會中獎
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘船由A港沿北偏東60°方向航行10km至B港,然后再沿北偏西30°方向航行10km至C港.
(1)求A,C兩港之間的距離(結(jié)果保留到0.1km,參考數(shù)據(jù):≈1.414,≈1.732);
(2)確定C港在A港的什么方向.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016黑龍江省齊齊哈爾市)如圖,平面直角坐標(biāo)系內(nèi),小正方形網(wǎng)格的邊長為1個單位長度,△ABC的三個頂點的坐標(biāo)分別為A(﹣1,3),B(﹣4,0),C(0,0)
(1)畫出將△ABC向上平移1個單位長度,再向右平移5個單位長度后得到的△A1B1C1;
(2)畫出將△ABC繞原點O順時針方向旋轉(zhuǎn)90°得到△A2B2O;
(3)在x軸上存在一點P,滿足點P到A1與點A2距離之和最小,請直接寫出P點的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com