【題目】已知y關(guān)于x的二次函數(shù):y=mnx2+nx+tn

1)當(dāng)m=t=0時(shí),判斷該函數(shù)圖象和x軸的交點(diǎn)個(gè)數(shù);

2)若n=t=3m,當(dāng)x為何值時(shí),函數(shù)有最值;

3)是否存在實(shí)數(shù)mt,使該函數(shù)圖象和x軸有交點(diǎn),且n的最大值和最小值分別為84?若存在,求mt值;若不存在,請(qǐng)說(shuō)明理由.

【答案】(1)見(jiàn)解析(2)x=函數(shù)有最大值為 (3) 不存在實(shí)數(shù)mt,使該函數(shù)圖象和x軸有交點(diǎn)

【解析】試題分析:(1)利用判別式求交點(diǎn)個(gè)數(shù).(2)化簡(jiǎn)二次函數(shù),配方,求最值.(3)配方求最值,最值用n,m,t表示,假設(shè)且n的最大值和最小值分別為84代入求m,t,無(wú)解.

試題解析:

1)當(dāng)m=t=0時(shí),y=nx2+nxn,

=n24×()n×n=n2,

當(dāng)n=0時(shí),=0,該函數(shù)圖象與x軸有1個(gè)交點(diǎn);

當(dāng)n≠0時(shí),0,該函數(shù)圖象與x軸沒(méi)有交點(diǎn);

2)若n=t=3m,拋物線的解析式為:y=m3mx2+3mx=mx2+3mx=mx2+

當(dāng)﹣m0,即m0時(shí),

所以當(dāng)x=時(shí),函數(shù)有最小值為,

當(dāng)﹣m0,即m0時(shí),

所以當(dāng)x=時(shí),函數(shù)有最大值為;

3y=mnx2+nx+tn,

=n2mn)(tn=n2+2m+tn2mt,

設(shè)w=﹣n2+2m+tn﹣2mt

∵該函數(shù)圖象和x軸有交點(diǎn),

w≥0,

n的最大值和最小值分別為84

∴新二次函數(shù)wn軸有兩個(gè)交點(diǎn)為(4,0)和(80),

w=﹣(n4)(n8=﹣n2+12n﹣32,

,

,

此方程組無(wú)實(shí)數(shù)解,

∴不存在實(shí)數(shù)mt,使該函數(shù)圖象和x軸有交點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校初一年級(jí)參加社會(huì)實(shí)踐課,報(bào)名第一門(mén)課的有x人,第二門(mén)課的人數(shù)比第一門(mén)課的20人,現(xiàn)在需要從報(bào)名第二門(mén)課的人中調(diào)出10人學(xué)習(xí)第一門(mén)課,那么用含x的式子解答下題.

1)報(bào)兩門(mén)課的共有多少人?

2)調(diào)動(dòng)后,報(bào)名第一門(mén)課比報(bào)名第二門(mén)課多多少人?計(jì)算出代數(shù)式后,請(qǐng)選擇一個(gè)你覺(jué)得合適的x值代入,并求出具體人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,過(guò)點(diǎn)C13)、D3,1)分別作x軸的垂線,垂足分別為A、B

1)求直線CD和直線OD的解析式;

2)點(diǎn)M為直線OD上的一個(gè)動(dòng)點(diǎn),過(guò)Mx軸的垂線交直線CD于點(diǎn)N,是否存在這樣的點(diǎn)M,使得以AC、MN為頂點(diǎn)的四邊形為平行四邊形?若存在,求此時(shí)點(diǎn)M的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

3)若△AOC沿CD方向平移(點(diǎn)C在線段CD上,且不與點(diǎn)D重合),在平移的過(guò)程中,設(shè)平移距離為t,△AOC與△OBD重疊部分的面積記為s,試求st的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】朗讀者自開(kāi)播以來(lái),以其厚重的文化底蘊(yùn)和感人的人文情懷,感動(dòng)了數(shù)以億計(jì)的觀眾,岳池縣某中學(xué)開(kāi)展朗讀比賽活動(dòng),九年級(jí)、班根據(jù)初賽成績(jī),各選出5名選手參加復(fù)賽,兩個(gè)班各選出的5名選手的復(fù)賽成績(jī)滿分為100如圖所示.

平均數(shù)

中位數(shù)

眾數(shù)

85

85

80

根據(jù)圖示填寫(xiě)表格;

結(jié)合兩班復(fù)賽成績(jī)的平均數(shù)和中位數(shù),分析哪個(gè)班級(jí)的復(fù)賽成績(jī)較好;

如果規(guī)定成績(jī)較穩(wěn)定班級(jí)勝出,你認(rèn)為哪個(gè)班級(jí)能勝出?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2開(kāi)始,連續(xù)的偶數(shù)相加,它們和的情況如下表:

加數(shù)的個(gè)數(shù)n

S

1

2=1×2

2

24=6=2×3

3

246=12=3×4

4

2468=20=4×5

5

246810=30=5×6

1)若n=8時(shí),則S的值為_____________

2)根據(jù)表中的規(guī)律猜想:用n的式子表示S的公式為:S=2+4+6+8+…+2n=__________________

3)根據(jù)上題的規(guī)律計(jì)算2+4+6+8+10+…+98+100的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店購(gòu)進(jìn)甲、乙兩種商品,已知每件甲種商品的價(jià)格比每件乙種商品的價(jià)格貴10元,用350元購(gòu)買(mǎi)甲種商品的件數(shù)恰好與用300元購(gòu)買(mǎi)乙種商品的件數(shù)相同.

(1)求甲、乙兩種商品每件的價(jià)格各是多少元?

(2)計(jì)劃購(gòu)買(mǎi)這兩種商品共50件,且投入的經(jīng)費(fèi)不超過(guò)3200元,那么,最多可購(gòu)買(mǎi)多少件甲種商品?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(閱讀理解題)在解分式方程時(shí),小明的解法如下:

解:方程兩邊都乘以x3,得2x=﹣12①.移項(xiàng)得﹣x=﹣122②.解得x③

1)你認(rèn)為小明在哪一步出現(xiàn)了錯(cuò)誤?  (只寫(xiě)序號(hào)),錯(cuò)誤的原因是 

2)小明的解題步驟完善嗎?如果不完善,說(shuō)明他還缺少哪一步?答: 

3)請(qǐng)你解這個(gè)方程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,濕地景區(qū)岸邊有三個(gè)觀景臺(tái)、.已知m m,點(diǎn)位于點(diǎn)的南偏西60. 7°方向,點(diǎn)位于點(diǎn)的南偏東66. 1°方向.

(1)求的面積;

(2)景區(qū)規(guī)劃在線段的中點(diǎn)處修建一個(gè)湖心亭,并修建觀景棧道.試求間的距離.(結(jié)果精確到0. 1 m,參考數(shù)據(jù): , , , , , , )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在梯形ABCD中,ABCD,D=90°,AD=CD=2,點(diǎn)E在邊AD上(不與點(diǎn)A、D重合),∠CEB=45°,EB與對(duì)角線AC相交于點(diǎn)F,設(shè)DE=x.

(1)用含x的代數(shù)式表示線段CF的長(zhǎng);

(2)如果把CAE的周長(zhǎng)記作CCAEBAF的周長(zhǎng)記作CBAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出它的定義域;

(3)當(dāng)∠ABE的正切值是時(shí),求AB的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案