【題目】如圖所示.在RtABC中,CD是斜邊上的中線,CE是高.已知AB=10cm,DE=2.5cm,則∠BDC=____________度,SBCD=______cm2

【答案】120

【解析】

首先根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得CD5cm,再根據(jù)三角函數(shù)值算出∠ECD的度數(shù),然后根據(jù)三角形外角的性質(zhì)可得∠BDC=∠CED+∠ECD,進(jìn)而得到∠BDC的度數(shù);再根據(jù)勾股定理可計(jì)算出CE的長,然后再利用三角形的面積公式進(jìn)行計(jì)算即可.

∵在RtABC中,CD是斜邊上的中線,

CD=AB

AB=10cm,

CD=5cm

CE是高,

∴△CED是直角三角形.

DE=2.5cm

sinECD==,

∴∠ECD=30°

∴∠BDC=CED+ECD=90°+30°=120°;

RtCED中:cm),

SBCD=DBCE=×5×=cm2).

故答案為:120;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一條自南向北的大道上有O、A兩個(gè)景點(diǎn),OA相距20km,在O處測(cè)得另一景點(diǎn)C位于點(diǎn)O的北偏東37°方向,在A處測(cè)得景點(diǎn)C位于點(diǎn)A的南偏東76°方向,且A、C相距13km .

(1)求:①A到OC之間的距離;

②O、C兩景點(diǎn)之間的距離;

(2)若在O處測(cè)得景點(diǎn)B 位于景點(diǎn)O的正東方向10km,求B、C兩景點(diǎn)之間的距離.(參考數(shù)據(jù):tan37°=0.75

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,以AB為直徑的圓交AC于點(diǎn)D,交BC于點(diǎn)E,延長AE至點(diǎn)F,使EF=AE,連接FB,FC

1)求證:四邊形ABFC是菱形;

2)若AD=3,BE=,求半圓和菱形ABFC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于A(﹣31)、Bm,3)兩點(diǎn),

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)寫出使一次函數(shù)的值大于反比例函數(shù)的x的取值范圍;

3)連接AO、BO,求△ABO的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線與拋物線相交于AB兩點(diǎn),且點(diǎn)A1,-4)為拋物線的頂點(diǎn),點(diǎn)Bx軸上。

1)求拋物線的解析式;

2)在(1)中拋物線的第二象限圖象上是否存在一點(diǎn)P,使△POB△POC全等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;

3)若點(diǎn)Qy軸上一點(diǎn),且△ABQ為直角三角形,求點(diǎn)Q的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(觀察發(fā)現(xiàn)):(1)如圖1,四邊形ABCD和四邊形AEFG都是正方形,且點(diǎn)E在邊AB上,連接DEBG,猜想線段DEBG的數(shù)量關(guān)系和位置關(guān)系.(只要求寫出結(jié)論,不必說出理由)

(深入探究):(2)如圖2,將圖1中正方形AEFG繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)一定的角度,其他條件與觀察發(fā)現(xiàn)中的條件相同,觀察發(fā)現(xiàn)中的結(jié)論是否還成立?請(qǐng)根據(jù)圖2加以說明.

(拓展應(yīng)用):(3)如圖3,直線l上有兩個(gè)動(dòng)點(diǎn)A、B,直線l外有一點(diǎn)動(dòng)點(diǎn)Q,連接QA,QB,以線段AB為邊在l的另一側(cè)作正方形ABCD,連接QD.隨著動(dòng)點(diǎn)A、B的移動(dòng),線段QD的長也會(huì)發(fā)生變化,若QAQB長分別為3,6保持不變,在變化過程中,線段QD的長是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=-x2+bx+c經(jīng)過點(diǎn)B0,3)和點(diǎn)A30).

1)求拋物線的函數(shù)表達(dá)式和直線的函數(shù)表達(dá)式;

2)若點(diǎn)P是拋物線落在第一象限,連接PA,PB,求PAB的面積S的最大值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+c的對(duì)稱軸是直線x1,且經(jīng)過點(diǎn)(﹣1,0),則下列結(jié)論:abc0;2ab0;a<﹣ 若方程ax2+bx+c20的兩個(gè)根為x1x2,則(x1+1)(x23)<0,正確的有( 。﹤(gè).

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)yax22ax1(a是常數(shù),a≠0),下列結(jié)論正確的是( )

A. 當(dāng)a1時(shí),函數(shù)圖象過點(diǎn)(1,1)

B. 當(dāng)a=-2時(shí),函數(shù)圖象與x軸沒有交點(diǎn)

C. a>0,則當(dāng)x≥1時(shí),yx的增大而減小

D. a<0,則當(dāng)x≤1時(shí),yx的增大而增大

查看答案和解析>>

同步練習(xí)冊(cè)答案