【題目】如圖,在平行四邊形ABCD中,∠ABC的平分線與CD的延長線交于點(diǎn)E,與AD交于點(diǎn)F,且點(diǎn)F恰好為邊AD的中點(diǎn).
(1)求證:△ABF≌△DEF;
(2)若AG⊥BE于G,BC=4,AG=1,求BE的長.
【答案】(1)證明見解析;(2)4
【解析】
(1)根據(jù)平行四邊形的性質(zhì)得到AB∥CD,根據(jù)平行線的性質(zhì)得到∠ABF=∠E,根據(jù)全等三角形的判定定理即可得到結(jié)論;
(2)根據(jù)平行四邊形的性質(zhì)和角平分線的定義可求出AB=AF,再根據(jù)等腰三角形的性質(zhì)可求出BG的長,進(jìn)而可求出BF的長,根據(jù)全等三角形的性質(zhì)得到BF=EF,所以BE=2BF,問題得解.
(1)證明:∵四邊形ABCD是平行四邊形,
∴AB∥CD,
∴∠ABF=∠E,
∵點(diǎn)F恰好為邊AD的中點(diǎn),
∴AF=DF,
在△ABF與△DEF中,
,
∴△ABF≌△DEF;
(2)∵四邊形ABCD是平行四邊形,
∴AD∥BC,AD=BC=4,
∵∠AFB=∠FBC,
∵∠ABC的平分線與CD的延長線相交于點(diǎn)E,
∴∠ABF=∠FBC,
∴∠AFB=∠ABF,
∴AB=AF,
∵點(diǎn)F為AD邊的中點(diǎn),AG⊥BE.
∴BG=,
∴BE=2,
∵△ABF≌△EDF,
∴BE=2BF=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校準(zhǔn)備購進(jìn)一批節(jié)能燈,已知1只A型節(jié)能燈和3只B型節(jié)能燈共需26元;3只A型節(jié)能燈和2只B型節(jié)能燈共需29元。
(1)求1只A型節(jié)能燈和1只B型節(jié)能燈的售價(jià)各是多少元?
(2)學(xué)校準(zhǔn)備購進(jìn)這兩種型號(hào)的節(jié)能燈共80只,并且A型節(jié)能燈的數(shù)量不多于B型節(jié)能燈的3倍,問如何購買最省錢,說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了加強(qiáng)公民的節(jié)水意識(shí),合理利用水資源,我市采用價(jià)格調(diào)控的手段達(dá)到節(jié)水的目的,我市自來水收費(fèi)的價(jià)目表如下表:
價(jià)目表 | |
每月用水量 | 單價(jià) |
不超出6m3的部分 | 3元/m3 |
超出6m3不超出10m3的部分 | 5元/m3 |
超出10m3的部分 | 9元/m3 |
注:水費(fèi)按月結(jié)算 |
請根據(jù)如表的內(nèi)容解答下列問題:
(1)填空:若該戶居民2月份用水4m3,則應(yīng)收水費(fèi)_______元;
(2)若該戶居民3月份用水am3(其中6m3<a<10m3),則應(yīng)收水費(fèi)多少元?(用含a的代數(shù)式表示,并化簡)
(3)若該戶居民4、5兩個(gè)月共用水15m3(5月份用水量超過了4月份),設(shè)4月份用水xm3,求該戶居民4、5兩個(gè)月共交水費(fèi)多少元?(用含x的代數(shù)式表示,并化簡)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°.
(1)用圓規(guī)和直尺在AC上作點(diǎn)P,使點(diǎn)P到A、B的距離相等.(保留作圖痕跡,不寫作法和證明)
(2)當(dāng)滿足(1)的點(diǎn)P到AB、BC的距離相等時(shí),求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,直線AB:y=x+b交y軸于點(diǎn)A(0,4),交x軸于點(diǎn)B.
(1)求點(diǎn)B的坐標(biāo);
(2)直線l垂直平分OB交AB于點(diǎn)D,交x軸于點(diǎn)E,點(diǎn)P是直線l上一動(dòng)點(diǎn),且在點(diǎn)D的上方,設(shè)點(diǎn)P的縱坐標(biāo)為n.
①用含n的代數(shù)式表示△ABP的面積;
②當(dāng)S△ABP=8時(shí),求點(diǎn)P的坐標(biāo);
(3)在(2)中②的條件下,以PB為斜邊作等腰直角△PBC,求點(diǎn)C的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E是對角線BD上的一點(diǎn),過點(diǎn)C作CF∥DB,且CF=DE,連接AE,BF,EF.
(1)求證:△ADE≌△BCF;
(2)若∠ABE+∠BFC=180°,則四邊形ABFE是什么特殊四邊形?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A是x軸非負(fù)半軸上的動(dòng)點(diǎn),點(diǎn)B坐標(biāo)為(0,4),M是線段AB的中點(diǎn),將點(diǎn)M繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)90°得到點(diǎn)C,過點(diǎn)C作x軸的垂線,垂足為F,過點(diǎn)B作y軸的垂線與直線CF相交于點(diǎn)E,連接AC,BC,設(shè)點(diǎn)A的橫坐標(biāo)為t.
(Ⅰ)當(dāng)t=2時(shí),求點(diǎn)M的坐標(biāo);
(Ⅱ)設(shè)ABCE的面積為S,當(dāng)點(diǎn)C在線段EF上時(shí),求S與t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(Ⅲ)當(dāng)t為何值時(shí),BC+CA取得最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一列有理數(shù)-1,2,-3,4,-5,6,……,如圖所示有序排列.根據(jù)圖中的排列規(guī)律可知,“峰1”中峰頂?shù)奈恢?/span>(C的位置)是有理數(shù)4.則-2019應(yīng)排在A,B,C,D,E中______的位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一個(gè)長為2m,寬為2n的長方形,沿圖中虛線用剪刀均分成四塊小長方形,然后按圖2的方法拼成一個(gè)邊長為(m+n)的正方形.
⑴ 請用兩種不同的方法求圖2中陰影部分的面積.
方法1: ;方法2: ;
⑵ 觀察圖2寫出,,三個(gè)代數(shù)式之間的等量關(guān)系: ;
⑶ 根據(jù)⑵中你發(fā)現(xiàn)的等量關(guān)系,解決如下問題:若,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com