【題目】)如圖,在正方形ABCD中,AB=4cm,動點M從A出發(fā),以1cm/s的速度沿折線AB﹣BC運動,同時動點N從A出發(fā),以2cm/s的速度沿折線AD﹣DC﹣CB運動,M,N第一次相遇時同時停止運動.設△AMN的面積為y,運動時間為x,則下列圖象中能大致反映y與x的函數(shù)關系的是( )

A.
B.
C.
D.

【答案】C
【解析】解:設M,N第一次相遇時間為xs,
由題意得:2x+x=16,
解得x=
根據(jù)題意:
當點N在AD邊,或在DC邊上運動時,點M均在AB邊上運動;
當點N在BC邊上運動時,點M、N均在BC邊上運動,直到相遇停止;
此時MN=4﹣(2x﹣8)﹣(x﹣4)=﹣3x+16
∴y=
故選C.
【考點精析】解答此題的關鍵在于理解函數(shù)的圖象的相關知識,掌握函數(shù)的圖像是由直角坐標系中的一系列點組成;圖像上每一點坐標(x,y)代表了函數(shù)的一對對應值,他的橫坐標x表示自變量的某個值,縱坐標y表示與它對應的函數(shù)值.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),已知正方形ABCD的對角線AC、BD相交于點O,EAC上一點,連接EB,過點AAM⊥BE,垂足為MAMBD于點F

(1)求證:OEOF;

(2)如圖(2),若點EAC的延長線上,AM⊥BE于點M,交DB的延長線于點F,其他條件不變,則結論“OEOF”還成立嗎?如果成立,請給出證明;如果不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探索性問題:

已知:b是最小的正整數(shù),且a、b滿足(c﹣5)2+|a+b|=0,請回答問題:

(1)請直接寫出a、b、c的值.a=   ,b=   ,c=   ;

(2)數(shù)軸上a、b、c三個數(shù)所對應的點分別為A、B、C,點A、B、C同時開始在數(shù)軸上運動,若點A以每秒1個單位長度的速度向左運動,同時,點B和點C分別以每秒1個單位長度和3個單位長度的速度向右運動,假設t秒鐘過后,若點B與點C之間的距離表示為BC,點A與點B之間的距離表示為AB,點A與點C之間的距離表示為AC.

①t秒鐘過后,AC的長度為   (用t的關系式表示);

請問:BC﹣AB的值是否隨著時間t的變化而改變?若變化,請說明理由;若不變,請求其值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)學課上,林老師在黑板上畫出如圖所示的△ABD和△ACE兩個三角形,并寫出四個條件:①AB=AC;②AD=AE;③∠1=∠2;④∠B=∠C.請你從這四個條件中選出三個作為題設,另一個作為結論,組成一個真命題,并給予證明.

題設:___________;結論:_______.(均填寫序號)

證明:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司為獎勵在趣味運動會上取得好成績的員工,計劃購買甲、乙兩種獎品共20件,其中甲種獎品每件40元,乙種獎品每件30元.

(1)如果購買甲、乙兩種獎品共花費了650元,求甲、乙兩種獎品各購買了多少件;

(2)如果購買乙種獎品的件數(shù)不超過甲種獎品件數(shù)的2倍,總花費不超過680元,求該公司有哪幾種不同的購買方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一張長方形紙片ABCD,已知AB=8,AD=7,E為AB上的一點,AE=5,點P在長方形ABCD的一邊上,要使△AEP是等腰三角形,則△AEP的底邊長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,點E、F分別在AD、CD上,且AE=DF,連接BE、AF,相交于G.求證:AF⊥BE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的弦,過B作BC⊥AB交⊙O于C,過C作⊙O的切線,交AB的延長線于點D,E為AD的中點,過E作EF//BC交DC的延長線于點F,連接AF并延長BC的延長線于點G
(1)求證:FC=FG;
(2)若BC=4,CG=6,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司生產(chǎn)的商品市場指導價為每千克150元,公司的實際銷售價格可以浮動x個百分點(即銷售價格=150(1+x%)),經(jīng)過市場調研發(fā)現(xiàn),這種商品的日銷售量p(千克)與銷售價格浮動的百分點x之間的函數(shù)關系為p=﹣2x+24.若該公司按浮動﹣12個百分點的價格出售,每件商品仍可獲利10%.
(1)求該公司生產(chǎn)銷售每千克商品的成本為多少元?
(2)當該公司的商品定價為多少元時,日銷售利潤為576元?(說明:日銷售利潤=(銷售價格一成本)×日銷售量)
(3)該公司決定每銷售一千克商品就捐贈a元利潤(a≥1)給希望工程,公司通過銷售記錄發(fā)現(xiàn),當價格浮動的百分點大于﹣1時,扣除捐贈后的日銷售利潤隨x的增大而減小,直接寫出a的取值范圍.

查看答案和解析>>

同步練習冊答案