【題目】如圖所示是某公園為迎接“中國–南亞博覽會”設置的一休閑區(qū).,弧的半徑長是米,是的中點,點在弧上,,則圖中休閑區(qū)(陰影部分)的面積是( )
A. 米2 B. 米2 C. 米2 D. 米2
科目:初中數(shù)學 來源: 題型:
【題目】建立模型:
如圖1,等腰Rt△ABC中,∠ABC=90°,CB=BA,直線ED經(jīng)過點B,過A作AD⊥ED于D,過C作CE⊥ED于E.則易證△ADB≌△BEC.這個模型我們稱之為“一線三垂直”.它可以把傾斜的線段AB和直角∠ABC轉(zhuǎn)化為橫平豎直的線段和直角,所以在平面直角坐標系中被大量使用.
模型應用:
(1)如圖2,點A(0,4),點B(3,0),△ABC是等腰直角三角形.
①若∠ABC=90°,且點C在第一象限,求點C的坐標;
②若AB為直角邊,求點C的坐標;
(2)如圖3,長方形MFNO,O為坐標原點,F的坐標為(8,6),M、N分別在坐標軸上,P是線段NF上動點,設PN=n,已知點G在第一象限,且是直線y=2x一6上的一點,若△MPG是以G為直角頂點的等腰直角三角形,請直接寫出點G的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示是甲乙兩個工程隊完成某項工程的進度圖,首先是甲獨做了10天,然后兩隊合做,完成剩下的工程.
(1)甲隊單獨完成這項工程,需要多少天?
(2)求乙隊單獨完成這項工程需要的天數(shù);
(3)實際完成的時間比甲獨做所需的時間提前多少天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中邊AB的垂直平分線分別交BC、AB于點D、E, AE=3cm,△ADC的周長為9cm,則△ABC的周長是( )cm.
A.9B.12C.15D.18
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點B,F,C,E在同一條直線上,點A,D在直線BE的兩側,AB∥DE,BF=CE,添加一個適當?shù)臈l件后,仍不能使得△ABC≌△DEF( 。
A.AC=DFB.AC∥DFC.∠A=∠DD.AB=DE
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖的△ABC中,AB>AC>BC,且D為BC上一點,F(xiàn)打算在AB上找一點P,在AC上找一點Q,使得△APQ與以P、D、Q為頂點的三角形全等,以下是甲、乙兩人的作法:
甲:連接AD,作AD的中垂線分別交AB、AC于P點、Q點,則P、Q兩點即為所求;
乙:過D作與AC平行的直線交AB于P點,過D作與AB平行的直線交AC于Q點,則P、Q兩點即為所求;
對于甲、乙兩人的作法,下列判斷何者正確( 。?
A.兩人皆正確B.兩人皆錯誤C.甲正確,乙錯誤D.甲錯誤,乙正確
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,頂角為36°的等腰三角形稱為銳角黃金三角形.它的底與腰之比為≈0.618,記為k.受此啟發(fā),八年級數(shù)學課題組探究底角為36°的等腰三角形,也稱鈍角黃金三角形,如圖2.
(1)在圖1和圖2中,若DE=BC,求證:EF=AB;
(2)求鈍角黃金三角形底與腰的比值(用含k的式子表示);
(3)如圖3,在鈍角黃金三角形ABC中,AD,DE依次分割出鈍角黃金三角形△ADC,△ADE.若AB=1,記△ABC,△ADC,△ADE分別為第1,2,3個鈍角黃金三角形,以此類推,求第2020個鈍角黃金三角形的周長(用含k的式子表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com