【題目】在研究反比例函數(shù)的圖象與性質(zhì)時(shí),我們對(duì)函數(shù)解析式進(jìn)行了深入分析.
首先,確定自變量的取值范圍是全體非零實(shí)數(shù),因此函數(shù)圖象會(huì)被軸分成兩部分;其次,分析解析式,得到隨的變化趨勢(shì):當(dāng)時(shí),隨著值的增大,的值減小,且逐漸接近于零,隨著值的減小,的值會(huì)越來(lái)越大,由此,可以大致畫(huà)出在時(shí)的部分圖象,如圖1所示:
利用同樣的方法,我們可以研究函數(shù)的圖象與性質(zhì). 通過(guò)分析解析式畫(huà)出部分函數(shù)圖象如圖2所示.
(1)請(qǐng)沿此思路在圖2中完善函數(shù)圖象的草圖并標(biāo)出此函數(shù)圖象上橫坐標(biāo)為0的點(diǎn);(畫(huà)出網(wǎng)格區(qū)域內(nèi)的部分即可)
(2)觀察圖象,寫(xiě)出該函數(shù)的一條性質(zhì):____________________;
(3)若關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根,結(jié)合圖象,直接寫(xiě)出實(shí)數(shù)的取值范圍:___________________________.
【答案】(1)詳見(jiàn)解析;(2)當(dāng)時(shí),隨著的增大而減。ù鸢覆晃ㄒ唬;(3).
【解析】
(1)首先確定自變量的取值范圍是且,因此函數(shù)圖象會(huì)被直線 分成兩部分;其次,分析解析式,得到隨的變化趨勢(shì):當(dāng)時(shí),隨著值的增大,的值減小,且逐漸接近于零;當(dāng)時(shí),隨著值的增大,的值減小,且逐漸接近于無(wú)窮;當(dāng)時(shí),,即點(diǎn)A的坐標(biāo)為,在函數(shù)圖象上表示出即可.
(2)觀察分析圖象,得出函數(shù)的性質(zhì),如增減性等.
(3)關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根,則函數(shù)與直線有兩個(gè)不同的交點(diǎn),根據(jù)圖象進(jìn)行分析即可.
(1)自變量的取值范圍是且,因此函數(shù)圖象會(huì)被直線 分成兩部分;其次,分析解析式,得到隨的變化趨勢(shì):當(dāng)時(shí),隨著值的增大,的值減小,且逐漸接近于零;當(dāng)時(shí),隨著值的增大,的值減小,且逐漸接近于無(wú)窮小;當(dāng)時(shí),,即點(diǎn)A的坐標(biāo)為,.
如圖所示:
(2)當(dāng)時(shí),隨著的增大而減小;(答案不唯一)
(3)關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根,則函數(shù)與直線有兩個(gè)不同的交點(diǎn),
直線過(guò)定點(diǎn),
如圖當(dāng)直線過(guò)點(diǎn)A時(shí),函數(shù)與直線有兩個(gè)不同的交點(diǎn),此時(shí)隨著的增大,函數(shù)與直線都有兩個(gè)不同的交點(diǎn),
故的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)E為矩形ABCD的邊AD上一點(diǎn),點(diǎn)P從點(diǎn)B出發(fā)沿BE→ED→DC運(yùn)動(dòng)到點(diǎn)C停止,點(diǎn)Q從點(diǎn)B出發(fā)沿BC運(yùn)動(dòng)到點(diǎn)C停止,它們運(yùn)動(dòng)的速度都是1cm/s.若點(diǎn)P、Q同時(shí)開(kāi)始運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s),△BPQ的面積為y(cm2),已知y與t之間的函數(shù)圖象如圖2所示.給出下列結(jié)論:①當(dāng)0<t≤10時(shí),△BPQ是等腰三角形;②S△ABE=48cm2;③14<t<22時(shí),y=110﹣5t;④在運(yùn)動(dòng)過(guò)程中,使得△ABP是等腰三角形的P點(diǎn)一共有3個(gè);⑤當(dāng)△BPQ與△BEA相似時(shí),t=14.5.其中正確結(jié)論的序號(hào)是( )
A. ①④⑤ B. ①②④ C. ①③④ D. ①③⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,半圓O的直徑AB=4,=,DE⊥AB于E,DF⊥AC于F,連接CD,DB,OD.
(1)求證:△CDF≌△BDE;
(2)當(dāng)AD= 時(shí),四邊形AODC是菱形;
(3)當(dāng)AD= 時(shí),四邊形AEDF是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以的一邊為直徑的半圓與其它兩邊,的交點(diǎn)分別為,,且.
(1)試判斷的形狀,并說(shuō)明理由.
(2)已知半圓的半徑為5,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是“過(guò)圓上一點(diǎn)作圓的切線”的尺規(guī)作圖過(guò)程.
已知:⊙O和⊙O上一點(diǎn)P.
求作:⊙O的切線MN,使MN經(jīng)過(guò)點(diǎn)P.
作法:如圖,
(1)作射線OP;
(2)以點(diǎn)P為圓心,小于OP的長(zhǎng)為半徑作弧交射線OP于A,B兩點(diǎn);
(3)分別以點(diǎn)A,B為圓心,以大于長(zhǎng)為半徑作弧,兩弧交于M,N兩點(diǎn);
(4)作直線MN.則MN就是所求作的⊙O的切線.
請(qǐng)回答:該尺規(guī)作圖的依據(jù)是____________________________________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工程隊(duì)承接了60萬(wàn)平方米的綠化工程,由于情況有變,……設(shè)原計(jì)劃每天綠化的面積為萬(wàn)平方米,列方程為,根據(jù)方程可知省略的部分是( )
A. 實(shí)際工作時(shí)每天的工作效率比原計(jì)劃提高了結(jié)果提前30天完成了這一任務(wù)
B. 實(shí)際工作時(shí)每天的工作效率比原計(jì)劃提高了,結(jié)果延誤30天完成了這一任務(wù)
C. 實(shí)際工作時(shí)每天的工作效率比原計(jì)劃降低了,結(jié)果延誤30天完成了這一任務(wù)
D. 實(shí)際工作時(shí)每天的工作效率比原計(jì)劃降低了,結(jié)果提前30天完成了這一任務(wù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)和矩形的邊都在直線上,以點(diǎn)為圓心,以24為半徑作半圓,分別交直線于兩點(diǎn).已知: ,,矩形自右向左在直線上平移,當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),矩形停止運(yùn)動(dòng).在平移過(guò)程中,設(shè)矩形對(duì)角線與半圓的交點(diǎn)為 (點(diǎn)為半圓上遠(yuǎn)離點(diǎn)的交點(diǎn)).
(1)如圖2,若與半圓相切,求的值;
(2)如圖3,當(dāng)與半圓有兩個(gè)交點(diǎn)時(shí),求線段的取值范圍;
(3)若線段的長(zhǎng)為20,直接寫(xiě)出此時(shí)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一平面直角坐標(biāo)系中有5個(gè)點(diǎn):A(1,1),B(﹣3,﹣1),C(﹣3,1),D(﹣2.﹣2).
(1)畫(huà)出△ABC的外接圓⊙P,并指出點(diǎn)D與⊙P相的位置關(guān)系;
(2)E點(diǎn)是y軸上的一點(diǎn),若直線DE與⊙P相切,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,小蘭用尺規(guī)作圖作△ABC邊AC上的高BH,作法如下:
①分別以點(diǎn)DE為圓心,大于DE的一半長(zhǎng)為半徑作弧兩弧交于F;
②作射線BF,交邊AC于點(diǎn)H;
③以B為圓心,BK長(zhǎng)為半徑作弧,交直線AC于點(diǎn)D和E;
④取一點(diǎn)K使K和B在AC的兩側(cè);
所以BH就是所求作的高.其中順序正確的作圖步驟是( 。
A.①②③④B.④③①②C.②④③①D.④③②①
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com