精英家教網 > 初中數學 > 題目詳情

【題目】在Rt三角形ABC中,∠ACB=90°,∠A=30° CD⊥AB于點D,那么△ACD與△BCD的面積之比為

【答案】3
【解析】解:∵CD⊥AB,
∴∠BCD+∠B=90°,
∵∠A+∠B=90°,
∴∠A=∠BCD,
∵∠B=∠B,
∴Rt△ABC∽Rt△CBD,
=( 2=(sin∠A)2=
=3.
所以答案是:3.
【考點精析】關于本題考查的相似三角形的性質和相似三角形的判定,需要了解對應角相等,對應邊成比例的兩個三角形叫做相似三角形;相似三角形的判定方法:兩角對應相等,兩三角形相似(ASA);直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似; 兩邊對應成比例且夾角相等,兩三角形相似(SAS);三邊對應成比例,兩三角形相似(SSS)才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°.如果將該三角形繞點A按順時針方向旋轉到△AB1C1的位置,點B1恰好落在邊BC的中點處.那么旋轉的角度等于( )

A.55°
B.60°
C.65°
D.80°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】把一張圓形紙片和一張含45°角的扇形紙片如圖所示的方式分別剪得一個正方形,如果所剪得的兩個正方形邊長都是1,那么圓形紙片和扇形紙片的面積比是( )

A.4:5
B.2:5
C.
:2
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,E是AB的中點,連接DE并延長交CB的延長線于點F,點G在邊BC上,且GDF=ADF

1求證:ADE≌△BFE;

2連接EG,判斷EG與DF的位置關系并說明理由

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】九年級數學興趣小組經過市場調查,得到某種運動服每月的銷量與售價的相關信息如下表:

售價(元/件)

100

110

120

130

月銷量(件)

200

180

160

140

已知該運動服的進價為每件60元,設售價為x元.
(1)請用含x的式子表示:
①銷售該運動服每件的利潤是 ()元;
②月銷量是 ()件;(直接寫出結果)
(2)設銷售該運動服的月利潤為y元,那么售價為多少時,當月的利潤最大,最大利潤是多少?
(3)若銷售該運動服所得的月利潤不低于8000元,請確定售價x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,在同一直角坐標系中,反比例函數y= 與二次函數y=﹣x2+2x+c的圖象交于點A(﹣1,m).
(1)求m、c的值;
(2)求二次函數圖象的對稱軸和頂點坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是半圓O的直徑,AC為弦,OD⊥AC于D,過點O作OE∥AC交半圓O于點E,過點E作EF⊥AB于F.若AC=2,則OF的長為(

A.
B.
C.1
D.2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=3,BC=5,點P是BC邊上的一個動點(點P與點B、C都不重合),現(xiàn)將△PCD沿直線PD折疊,使點C落到點F處;過點P作∠BPF的角平分線交AB于點E.設BP=x,BE=y,則下列圖象中,能表示y與x的函數關系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在菱形ABCD中,∠A=30°,在同一平面內,以對角線BD為底邊作頂角為120°的等腰三角形BDE,則∠EBC的度數為

查看答案和解析>>

同步練習冊答案